RESUMEN
BACKGROUND: Spinal muscular atrophy (SMA) is due to the homozygous absence of SMN1 in around 97% of patients, independent of the severity (classically ranked into types I-III). The high genetic homogeneity, coupled with the excellent results of presymptomatic treatments of patients with each of the three disease-modifying therapies available, makes SMA one of the golden candidates to genetic newborn screening (NBS) (SMA-NBS). The implementation of SMA in NBS national programmes occurring in some countries is an arising new issue that the scientific community has to address. We report here the results of the first Italian SMA-NBS project and provide some proposals for updating the current molecular diagnostic scenario. METHODS: The screening test was performed by an in-house-developed qPCR assay, amplifying SMN1 and SMN2. Molecular prognosis was assessed on fresh blood samples. RESULTS: We found 15 patients/90885 newborns (incidence 1:6059) having the following SMN2 genotypes: 1 (one patient), 2 (eight patients), 2+c.859G>C variant (one patient), 3 (three patients), 4 (one patient) or 6 copies (one patient). Six patients (40%) showed signs suggestive of SMA at birth. We also discuss some unusual cases we found. CONCLUSION: The molecular diagnosis of SMA needs to adapt to the new era of the disease with specific guidelines and standard operating procedures. In detail, SMA diagnosis should be felt as a true medical urgency due to therapeutic implications; SMN2 copy assessment needs to be standardised; commercially available tests need to be improved for higher SMN2 copies determination; and the SMN2 splicing-modifier variants should be routinely tested in SMA-NBS.
Asunto(s)
Atrofia Muscular Espinal , Tamizaje Neonatal , Humanos , Recién Nacido , Proyectos Piloto , Tamizaje Neonatal/métodos , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Genotipo , ItaliaRESUMEN
Citrulline is a target analyte measured at expanded newborn screening (NBS) and its elevation represents a biomarker for distal urea cycle disorders and citrin deficiency. Altered ratios of citrulline with other urea cycle-related amino acids are helpful for the differential diagnosis. However, the use of cut-off values in screening programmes has raised the issue about the interpretation of mild elevation of citrulline levels detected at NBS, below the usual range observed in the "classical/severe" forms of distal urea cycle disorders and in citrin deficiency. Herein, we report ten subjects with positive NBS for a mild elevation of citrulline (<100 µmol/L), in whom molecular investigations revealed carriers status for argininosuccinate synthase deficiency, a milder form of argininosuccinate lyase deficiency and two other diseases, lysinuric protein intolerance and dihydrolipoamide dehydrogenase deficiency, not primarily affecting the urea cycle. To guide the diagnostic process, we have designed an algorithm for mild citrulline elevation (<100 µmol/L) at NBS, which expands the list of disorders to be included in the differential diagnosis.
Asunto(s)
Citrulina , Trastornos Innatos del Ciclo de la Urea , Citrulinemia , Humanos , Recién Nacido , Tamizaje Neonatal , Urea , Trastornos Innatos del Ciclo de la Urea/diagnóstico , Trastornos Innatos del Ciclo de la Urea/genéticaRESUMEN
3-Methylglutaconic aciduria type I (MGCA1) is an inborn error of the leucine degradation pathway caused by pathogenic variants in the AUH gene, which encodes 3-methylglutaconyl-coenzyme A hydratase (MGH). To date, MGCA1 has been diagnosed in 19 subjects and has been associated with a variable clinical picture, ranging from no symptoms to severe encephalopathy with basal ganglia involvement. We report the case of a 31-month-old female child referred to our center after the detection of increased 3-hydroxyisovalerylcarnitine levels at newborn screening, which were associated with increased urinary excretion of 3-methylglutaconic acid, 3-hydroxyisovaleric acid, and 3-methylglutaric acid. A next-generation sequencing (NGS) panel for 3-methylglutaconic aciduria failed to establish a definitive diagnosis. To further investigate the strong biochemical indication, we measured MGH activity, which was markedly decreased. Finally, single nucleotide polymorphism array analysis disclosed the presence of two microdeletions in compound heterozygosity encompassing the AUH gene, which confirmed the diagnosis. The patient was then supplemented with levocarnitine and protein intake was slowly decreased. At the last examination, the patient showed mild clumsiness and an expressive language disorder. This case exemplifies the importance of the biochemical phenotype in the differential diagnosis of metabolic diseases and the importance of collaboration between clinicians, biochemists, and geneticists for an accurate diagnosis.
Asunto(s)
Errores Innatos del Metabolismo , Femenino , Humanos , Recién Nacido , Errores Innatos del Metabolismo/genética , Tamizaje Neonatal , FenotipoRESUMEN
Neonatal screening for phenylketonuria (PKU, OMIM: 261600) was introduced at the end of the 1960s. We developed a rapid and simple molecular test for the most frequent phenylalanine hydroxylase (PAH, Gene ID: 5053) mutations. Using this method to detect the 18 most frequent mutations, it is possible to achieve a 75% detection rate in Italian population. The variants selected also reach a high detection rate in other populations, for example, 70% in southern Germany, 68% in western Germany, 76% in Denmark, 68% in Sweden, 63% in Poland, and 60% in Bulgaria. We successfully applied this confirmation test in neonatal screening for hyperphenylalaninemias using dried blood spots and obtained the genotype in approximately 48 h. The method was found to be suitable as second tier test in neonatal screening for hyperphenylalaninemias in neonates with a positive screening test. This test can also be useful for carrier screening because it can bypass the entire coding sequence and intron-exon boundaries sequencing, thereby overcoming the questions that this approach implies, such as new variant interpretations.
RESUMEN
Dopa-responsive dystonia (DRD) is an inherited metabolic disorder now classified as DYT5 with two different biochemical defects: autosomal dominant GTP cyclohydrolase 1 (GCH1) deficiency or autosomal recessive tyrosine hydroxylase deficiency. We report the case of a 10-years-old girl with progressive generalized dystonia and gait disorder who presented dramatic response to levodopa. The phenylalanine to tyrosine ratio was significantly higher after phenylalanine loading test. This condition had two different heterozygous mutations in the GCH1 gene: the previously reported P23L mutation and a new Q182E mutation. The characteristics of the DRD and the molecular genetic findings are discussed.
Asunto(s)
Dopaminérgicos/uso terapéutico , Distonía/tratamiento farmacológico , Distonía/genética , GTP Ciclohidrolasa/genética , Levodopa/uso terapéutico , Mutación Missense/genética , Niño , Distonía/sangre , Femenino , Heterocigoto , Humanos , Fenilalanina/sangre , Tirosina/sangreRESUMEN
BACKGROUND: Guanidinoacetate (GAA) and creatine (Cr) are reliable biochemical markers of primary creatine disorders. The aim of this study was to develop and validate a method for the determination of GAA and Cr in dried blood spot through the use of stable isotope dilution and flow injection analysis (FIA)-ESI-MS/MS. METHODS: Dried blood spots were extracted using methanol-water solution containing D3-Cr. After evaporation and formation of butyl esters, samples were analyzed using multiple reaction monitoring mode (m/z 174.2-->101.1 for GAA, 188.3-->90.1 for Cr and 191.3-->93.1 for D3-Cr). RESULTS: The analysis was very fast (1 min). The detection limits were 0.34 micromol/l of blood and 0.30 micromol/l of blood for Cr and GAA, respectively, and the response was linear over the range 0.25-12.5 micromol/l of blood for GAA and 3.57-624.7 micromol/l of blood for Cr. Recovery range was 93-101% for Cr and 94-105% for GAA and between-run CVs were 5.3% for GAA and 4.5% for Cr. Ion suppression effect was also studied. The method was applied to spots obtained from two patients affected by GAMT deficiency, four patients affected by AGAT deficiency (including a newborn) as well as 282 healthy subjects. CONCLUSIONS: The detection of GAA in dried blood spot by FIA-ESI-MS/MS is a highly reliable and high throughput method for the diagnosis of GAMT and AGAT deficiencies and a possible tool for newborn screening of both these tractable disorders.
Asunto(s)
Creatina/sangre , Glicina/análogos & derivados , Espectrometría de Masa por Ionización de Electrospray/métodos , Amidinotransferasas/deficiencia , Niño , Preescolar , Cromatografía Líquida de Alta Presión , Creatina/normas , Glicina/sangre , Glicina/normas , Guanidinoacetato N-Metiltransferasa/deficiencia , Humanos , Lactante , Recién Nacido , Enfermedades del Sistema Nervioso/sangre , Enfermedades del Sistema Nervioso/enzimología , Valores de Referencia , Reproducibilidad de los Resultados , Espectrometría de Masa por Ionización de Electrospray/instrumentaciónAsunto(s)
Distonía/genética , GTP Ciclohidrolasa/genética , Mutación , Adolescente , Análisis Mutacional de ADN/métodos , Dihidroxifenilalanina/uso terapéutico , Dopaminérgicos/uso terapéutico , Distonía/tratamiento farmacológico , Salud de la Familia , Femenino , Glutamina/genética , Histidina/genética , HumanosRESUMEN
We describe a boy affected by an early-onset severe encephalopathy (stagnation of psychomotor development, paroxysmal dystonic postures and movements of limbs, hypokinesia) due to tyrosine hydroxylase deficiency. High blood prolactin and low homovanillic acid in cerebrospinal fluid suggested the diagnosis. Genetic analysis revealed 3 new missense mutations on tyrosine hydroxylase gene: [c.752C>T(p.P251L) and c.887G>A(p.R296Q] harbored by the father and c.836G>T (p.C279F) of maternal origin. Bioinformatics tools have been helpful in predicting the pathogenic role of p.P251L and p.C279F substitutions, while a weak pathogenic effect was ascribed to p.R296Q.
Asunto(s)
Mutación Missense/genética , Trastornos Psicomotores/genética , Tirosina 3-Monooxigenasa/genética , Preescolar , Distonía/sangre , Distonía/líquido cefalorraquídeo , Distonía/complicaciones , Distonía/genética , Pruebas Genéticas , Ácido Homovanílico/líquido cefalorraquídeo , Humanos , Masculino , Prolactina/sangre , Trastornos Psicomotores/sangre , Trastornos Psicomotores/líquido cefalorraquídeo , Trastornos Psicomotores/complicaciones , Tirosina 3-Monooxigenasa/deficienciaRESUMEN
Dopa-responsive dystonia (DRD) is an inherited metabolic disorder now classified as DYT5 with two different biochemical defects: autosomal dominant GTP cyclohydrolase 1 (GCH1) deficiency or autosomal recessive tyrosine hydroxylase deficiency. We report the case of a 10-years-old girl with progressive generalized dystonia and gait disorder who presented dramatic response to levodopa. The phenylalanine to tyrosine ratio was significantly higher after phenylalanine loading test. This condition had two different heterozygous mutations in the GCH1 gene: the previously reported P23L mutation and a new Q182E mutation. The characteristics of the DRD and the molecular genetic findings are discussed.
Distonia dopa-responsiva (DRD), classificada como DYT5, é um erro inato do metabolismo que pode ser causado por dois diferentes tipos de defeito bioquímico: deficiência de GTP ciclo-hidrolase 1 (GCH1) (autossômica dominante) ou de tirosina hidroxilase (autossômica recessiva). Descrevemos o caso de menina de 10 anos com distonia generalizada progressiva e alteração da marcha com importante melhora após uso de levodopa. A relação fenilalanina/tirosina estava aumentada após teste de sobrecarga com fenilalanina. O estudo molecular mostrou que o paciente apresenta uma combinação hererozigótica de mutação no gene GCH1: a já conhecida mutação P23L e uma nova mutação Q182E. Discutem-se as características da DRD e as alterações genéticas possíveis.