Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Xenotransplantation ; 28(3): e12666, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33538027

RESUMEN

Neonatal and juvenile porcine islet cell clusters (ICC) present an unlimited source for islet xenotransplantation to treat type 1 diabetes patients. We isolated ICC from pancreata of 14 days old juvenile piglets and characterized their maturation by immunofluorescence and insulin secretion assays. Multipotent mesenchymal stromal cells derived from exocrine tissue of same pancreata (pMSC) were characterized for their differentiation potential and ability to sustain ICC insulin secretion in vitro and in vivo. Isolation of ICC resulted in 142 ± 50 × 103 IEQ per pancreas. Immunofluorescence staining revealed increasing presence of insulin-positive beta cells between day 9 and 21 in culture and insulin content per 500IEC of ICC increased progressively over time from 1178.4 ± 450 µg/L to 4479.7 ± 1954.2 µg/L from day 7 to 14, P < .001. Highest glucose-induced insulin secretion by ICC was obtained at day 7 of culture and reached a fold increase of 2.9 ± 0.4 compared to basal. Expansion of adherent cells from the pig exocrine tissue resulted in a homogenous CD90+ , CD34- , and CD45- fibroblast-like cell population and differentiation into adipocytes and chondrocytes demonstrated their multipotency. Insulin release from ICC was increased in the presence of pMSC and dependent on cell-cell contact (glucose-induced fold increase: ICC alone: 1.6 ± 0.2; ICC + pMSC + contact: 3.2 ± 0.5, P = .0057; ICC + pMSC no-contact: 1.9 ± 0.3; theophylline stimulation: alone: 5.4 ± 0.7; pMSC + contact: 8.4 ± 0.9, P = .013; pMSC no-contact: 5.2 ± 0.7). After transplantation of encapsulated ICC using Ca2+ -alginate (alg) microcapsules into streptozotocin-induced diabetic and immunocompetent mice, transient normalization of glycemia was obtained up to day 7 post-transplant, whereas ICC co-encapsulated with pMSC did not improve glycemia and showed increased pericapsular fibrosis. We conclude that pMSC derived from juvenile porcine exocrine pancreas improves insulin secretion of ICC by direct cell-cell contact. For transplantation purposes, the use of pMSC to support beta-cell function will depend on the development of new anti-fibrotic polymers and/or on genetically modified pigs with lower immunogenicity.


Asunto(s)
Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Células Madre Mesenquimatosas , Páncreas Exocrino , Animales , Humanos , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Ratones , Páncreas/metabolismo , Páncreas Exocrino/metabolismo , Porcinos , Trasplante Heterólogo
2.
J Cell Mol Med ; 22(5): 2580-2591, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29478261

RESUMEN

Vascular Endothelial Growth Factor (VEGF) can induce normal or aberrant angiogenesis depending on the amount secreted in the microenvironment around each cell. Towards a possible clinical translation, we developed a Fluorescence Activated Cell Sorting (FACS)-based technique to rapidly purify transduced progenitors that homogeneously express a desired specific VEGF level from heterogeneous primary populations. Here, we sought to induce safe and functional angiogenesis in ischaemic myocardium by cell-based expression of controlled VEGF levels. Human adipose stromal cells (ASC) were transduced with retroviral vectors and FACS purified to generate two populations producing similar total VEGF doses, but with different distributions: one with cells homogeneously producing a specific VEGF level (SPEC), and one with cells heterogeneously producing widespread VEGF levels (ALL), but with an average similar to that of the SPEC population. A total of 70 nude rats underwent myocardial infarction by coronary artery ligation and 2 weeks later VEGF-expressing or control cells, or saline were injected at the infarction border. Four weeks later, ventricular ejection fraction was significantly worsened with all treatments except for SPEC cells. Further, only SPEC cells significantly increased the density of homogeneously normal and mature microvascular networks. This was accompanied by a positive remodelling effect, with significantly reduced fibrosis in the infarcted area. We conclude that controlled homogeneous VEGF delivery by FACS-purified transduced ASC is a promising strategy to achieve safe and functional angiogenesis in myocardial ischaemia.


Asunto(s)
Infarto del Miocardio/terapia , Factor A de Crecimiento Endotelial Vascular/metabolismo , Tejido Adiposo/citología , Animales , Linaje de la Célula , Fibrosis , Pruebas de Función Cardíaca , Humanos , Masculino , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Neovascularización Fisiológica , Ratas Desnudas , Trasplante de Células Madre , Células del Estroma/metabolismo
3.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119610, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37913845

RESUMEN

BACKGROUND: We tested whether enhancing the capacity for calcium/calmodulin-dependent protein kinase type II (CaMKII) signaling would delay fatigue of excitation-induced calcium release and improve contractile characteristics of skeletal muscle during fatiguing exercise. METHODS: Fast and slow type muscle, gastrocnemius medialis (GM) and soleus (SOL), of rats and mouse interosseus (IO) muscle fibers, were transfected with pcDNA3-based plasmids for rat α and ß CaMKII or empty controls. Levels of CaMKII, its T287-phosphorylation (pT287-CaMKII), and phosphorylation of components of calcium release and re-uptake, ryanodine receptor 1 (pS2843-RyR1) and phospholamban (pT17-PLN), were quantified biochemically. Sarcoplasmic calcium in transfected muscle fibers was monitored microscopically during trains of electrical excitation based on Fluo-4 FF fluorescence (n = 5-7). Effects of low- (n = 6) and high- (n = 8) intensity exercise on pT287-CaMKII and contractile characteristics were studied in situ. RESULTS: Co-transfection with αCaMKII-pcDNA3/ßCaMKII-pcDNA3 increased α and ßCaMKII levels in SOL (+45.8 %, +250.5 %) and GM (+40.4 %, +89.9 %) muscle fibers compared to control transfection. High-intensity exercise increased pT287-ßCaMKII and pS2843-RyR1 levels in SOL (+269 %, +151 %) and GM (+354 %, +119 %), but decreased pT287-αCaMKII and p17-PLN levels in GM compared to SOL (-76 % vs. +166 %; 0 % vs. +128 %). α/ß CaMKII overexpression attenuated the decline of calcium release in muscle fibers with repeated excitation, and mitigated exercise-induced deterioration of rates in force production, and passive force, in a muscle-dependent manner, in correlation with pS2843-RyR1 and pT17-PLN levels (|r| > 0.7). CONCLUSION: Enhanced capacity for α/ß CaMKII signaling improves fatigue-resistance of active and passive contractile muscle properties in association with RyR1- and PLN-related improvements in sarcoplasmic calcium release.


Asunto(s)
Calcio , Canal Liberador de Calcio Receptor de Rianodina , Ratas , Ratones , Animales , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Señalización del Calcio , Contracción Muscular
4.
Front Physiol ; 13: 933792, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36148310

RESUMEN

Homozygous carriers of the deletion allele in the gene for angiotensin-converting enzyme (ACE-DD) demonstrate an elevated risk to develop inactivity-related type II diabetes and show an overshoot of blood glucose concentration with enduring exercise compared to insertion allele carriers. We hypothesized that ACE-DD genotypes exhibit a perturbed activity of signaling processes governing capillary-dependent glucose uptake in vastus lateralis muscle during exhaustive cycling exercise, which is associated with the aerobic fitness state. 27 healthy, male white Caucasian subjects (26.8 ± 1.1 years; BMI 23.6 +/- 0.6 kg m-2) were characterized for their aerobic fitness based on a threshold of 50 ml O2 min-1 kg-1 and the ACE-I/D genotype. Subjects completed a session of exhaustive one-legged exercise in the fasted state under concomitant measurement of cardiorespiratory function. Capillary blood and biopsies were collected before, and ½ and 8 h after exercise to quantify glucose and lipid metabolism-related compounds (lipoproteins, total cholesterol, ketones) in blood, the phosphorylation of 45 signaling proteins, muscle glycogen and capillaries. Effects of aerobic fitness, ACE-I/D genotype, and exercise were assessed with analysis of variance (ANOVA) under the hypothesis of a dominant effect of the insertion allele. Exertion with one-legged exercise manifested in a reduction of glycogen concentration ½ h after exercise (-0.046 mg glycogen mg-1 protein). Blood glucose concentration rose immediately after exercise in association with the ACE-I/D genotype (ACE-DD: +26%, ACE-ID/II: +6%) and independent of the fitness state (p = 0.452). Variability in total cholesterol was associated with exercise and fitness. In fit subjects, the phosphorylation levels of glucose uptake-regulating kinases [AKT-pT308 (+156%), SRC-pY419, p38α-pT180/T182, HCK-pY411], as well as cytokine/angiotensin 1-7 signaling factors [(STAT5A-pY694, STAT5B-pY699, FYN-pY420, EGFR-pY1086] were higher in angiotensin converting enzyme I-allele carriers than ACE-DD genotypes after exercise. Conversely, the AKT-S473 phosphorylation level (+117%) and angiotensin 2's blood concentration (+191%) were higher in ACE-DD genotypes. AKT-S473 phosphorylation levels post-exercise correlated to anatomical parameters of muscle performance and metabolic parameters (p < 0.05 and │r│>0.70). The observations identify reciprocal alterations of S473 and T308 phosphorylation of AKT as gatekeeper of a post-translational dysregulation of transcapillary glucose uptake in ACE-DD genotypes which may be targeted in personalized approaches to mitigate type II diabetes.

5.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35631388

RESUMEN

Cathepsin B is a lysosomal cysteine protease that plays an important role in cancer, atherosclerosis, and other inflammatory diseases. The suppression of cathepsin B can inhibit tumor growth. The overexpression of cathepsin B can be used for the imaging and photodynamic therapy (PDT) of cancer. PDT targeting of cathepsin B may have a significant potential for selective destruction of cells with high cathepsin B activity. We synthesized a cathepsin B-cleavable polymeric photosensitizer prodrug (CTSB-PPP) that releases pheophorbide a (Pha), an efficient photosensitizer upon activation with cathepsin B. We determined the concentration dependant uptake in vitro, the safety, and subsequent PDT-induced toxicity of CTSB-PPP, and ROS production. CTSB-PPP was cleaved in bone marrow cells (BMCs), which express a high cathepsin B level. We showed that the intracellular fluorescence of Pha increased with increasing doses (3-48 µM) and exerted significant dark toxicity above 12 µM, as assessed by MTT assay. However, 6 µM showed no toxicity on cell viability and ex vivo vascular function. Time-dependent studies revealed that cellular accumulation of CTSB-PPP (6 µM) peaked at 60 min of treatment. PDT (light dose: 0-100 J/cm2, fluence rate: 100 mW/cm2) was applied after CTSB-PPP treatment (6 µM for 60 min) using a special frontal light diffuser coupled to a diode laser (671 nm). PDT resulted in a light dose-dependent reduction in the viability of BMCs and was associated with an increased intracellular ROS generation. Fluorescence and ROS generation was significantly reduced when the BMCs were pre-treated with E64-d, a cysteine protease inhibitor. In conclusion, we provide evidence that CTSB-PPP showed no dark toxicity at low concentrations. This probe could be utilized as a potential imaging agent to identify cells or tissues with cathepsin B activity. CTSB-PPP-based PDT results in effective cytotoxicity and thus, holds great promise as a therapeutic agent for achieving the selective destruction of cells with high cathepsin B activity.

6.
Cells ; 11(9)2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35563686

RESUMEN

To obtain meaningful results of hepatic stellate cell (HSC) function, it is crucial to use highly pure HSC populations. Our aim was to optimize HSC isolation from mice livers without exploiting the characteristically transient vitamin A autofluorescence of HSC. HSCs were isolated from C57BL/6 mice using a two-step collagenase digestion and Nycodenz gradient separation followed by CD11b-negative sorting step in order to remove contaminating macrophages and dendritic cells. Isolated cells were analyzed for yield, viability, purity, and potential new markers using immunofluorescence and flow cytometry. We obtained a yield of 350,595 ± 100,773 HSC per mouse liver and a viability of isolated cells of 92.4 ± 3.1%. We observed a low macrophage/dendritic cell contamination of 1.22 ± 0.54%. Using flow cytometry, we demonstrated that CD38 was expressed at the surface of HSC subpopulations and that all expressed intracellular markers specific for HSC in the liver. This isolation method, avoiding fluorescent activated cell sorting (FACS), allowed isolation of HSCs with high purity. Further, flow cytometry analysis suggests that CD38 may be a reliable marker of HSCs and may include subpopulations of HSCs without retinoid droplets.


Asunto(s)
Células Estrelladas Hepáticas , Hígado , Animales , Biomarcadores/metabolismo , Separación Celular/métodos , Citometría de Flujo , Células Estrelladas Hepáticas/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL
7.
Biomedicines ; 10(3)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35327330

RESUMEN

Interactions between macrophages, cardiac cells and the extracellular matrix are crucial for cardiac repair following myocardial infarction (MI). We hypothesized that cell-based treatments might modulate these interactions. After validating that bone marrow cells (BMC) associated with fibrin lowered the infarct extent and improved cardiac function, we interrogated the influence of fibrin, as a biologically active scaffold, on the secretome of BMC and the impact of their association on macrophage fate and cardiomyoblast proliferation. In vitro, BMC were primed with fibrin (F-BMC). RT-PCR and proteomic analyses showed that fibrin profoundly influenced the gene expression and the secretome of BMCs. Consequently, the secretome of F-BMC increased the spreading of cardiomyoblasts and showed an alleviated immunomodulatory capacity. Indeed, the proliferation of anti-inflammatory macrophages was augmented, and the phenotype of pro-inflammatory switched as shown by downregulated Nos2, Il6 and IL1b and upregulated Arg1, CD163, Tgfb and IL10. Interestingly, the secretome of F-BMC educated-macrophages stimulated the incorporation of EdU in cardiomyoblasts. In conclusion, our study provides evidence that BMC/fibrin-based treatment improved cardiac structure and function following MI. In vitro proofs-of-concept reveal that the F-BMC secretome increases cardiac cell size and promotes an anti-inflammatory response. Thenceforward, the F-BMC educated macrophages sequentially stimulated cardiac cell proliferation.

8.
Proc Natl Acad Sci U S A ; 105(36): 13662-7, 2008 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-18757758

RESUMEN

Tenascin-C (TNC) is a mechano-regulated, morphogenic, extracellular matrix protein that is associated with tissue remodeling. The physiological role of TNC remains unclear because transgenic mice engineered for a TNC deficiency, via a defect in TNC secretion, show no major pathologies. We hypothesized that TNC-deficient mice would demonstrate defects in the repair of damaged leg muscles, which would be of functional significance because this tissue is subjected to frequent cycles of mechanical damage and regeneration. TNC-deficient mice demonstrated a blunted expression of the large TNC isoform and a selective atrophy of fast-muscle fibers associated with a defective, fast myogenic expression response to a damaging mechanical challenge. Transcript profiling mapped a set of de-adhesion, angiogenesis, and wound healing regulators as TNC expression targets in striated muscle. Expression of these regulators correlated with the residual expression of a damage-related 200-kDa protein, which resembled the small TNC isoform. Somatic knockin of TNC in fast-muscle fibers confirmed the activation of a complex expression program of interstitial and slow myofiber repair by myofiber-derived TNC. The results presented here show that a TNC-orchestrated molecular pathway integrates muscle repair into the load-dependent control of the striated muscle phenotype.


Asunto(s)
Músculos/metabolismo , Tenascina/metabolismo , Animales , Atrofia/genética , Atrofia/metabolismo , Pollos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genotipo , Ratones , Peso Molecular , Contracción Muscular , Fenotipo , Isoformas de Proteínas/metabolismo , Ratas , Transducción de Señal , Estrés Mecánico , Tenascina/deficiencia , Tenascina/genética , Transcripción Genética/genética
9.
Artif Intell Med ; 120: 102161, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34629149

RESUMEN

Early-stage detection of cutaneous melanoma can vastly increase the chances of cure. Excision biopsy followed by histological examination is considered the gold standard for diagnosing the disease, but requires long high-cost processing time, and may be biased, as it involves qualitative assessment by a professional. In this paper, we present a new machine learning approach using raw data for skin Raman spectra as input. The approach is highly efficient for classifying benign versus malignant skin lesions (AUC 0.98, 95% CI 0.97-0.99). Furthermore, we present a high-performance model (AUC 0.97, 95% CI 0.95-0.98) using a miniaturized spectral range (896-1039 cm-1), thus demonstrating that only a single fragment of the biological fingerprint Raman region is needed for producing an accurate diagnosis. These findings could favor the future development of a cheaper and dedicated Raman spectrometer for fast and accurate cancer diagnosis.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Biopsia , Humanos , Aprendizaje Automático , Melanoma/diagnóstico , Neoplasias Cutáneas/diagnóstico , Espectrometría Raman
10.
Am J Sports Med ; 49(14): 3970-3980, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34714701

RESUMEN

BACKGROUND: The injection of mesenchymal stem cells (MSCs) mitigates fat accumulation in released rotator cuff muscle after tendon repair in rodents. PURPOSE: To investigate whether the injection of autologous MSCs halts muscle-to-fat conversion after tendon repair in a large animal model for rotator cuff tendon release via regional effects on extracellular fat tissue and muscle fiber regeneration. STUDY DESIGN: Controlled laboratory study. METHODS: Infraspinatus (ISP) muscles of the right shoulder of Swiss Alpine sheep (n = 14) were released by osteotomy and reattached 16 weeks later without (group T; n = 6) or with (group T-MSC; n = 8) electropulse-assisted injection of 0.9 Mio fluorescently labeled MSCs as microtissues with media in demarcated regions; animals were allowed 6 weeks of recovery. ISP volume and composition were documented with computed tomography and magnetic resonance imaging. Area percentages of muscle fiber types, fat, extracellular ground substance, and fluorescence-positive tissue; mean cross-sectional area (MCSA) of muscle fibers; and expression of myogenic (myogenin), regeneration (tenascin-C), and adipogenic markers (peroxisome proliferator-activated receptor gamma [PPARG2]) were quantified in injected and noninjected regions after recovery. RESULTS: At 16 weeks after tendon release, the ISP volume was reduced and the fat fraction of ISP muscle was increased in group T (137 vs 185 mL; 49% vs 7%) and group T-MSC (130 vs 166 mL; 53% vs 10%). In group T-MSC versus group T, changes during recovery after tendon reattachment were abrogated for fat-free mass (-5% vs -29%, respectively; P = .018) and fat fraction (+1% vs +24%, respectively; P = .009%). The area percentage of fat was lower (9% vs 20%; P = .018) and the percentage of the extracellular ground substance was higher (26% vs 20%; P = .007) in the noninjected ISP region for group T-MSC versus group T, respectively. Regionally, MCS injection increased tenascin-C levels (+59%) and the water fraction, maintaining the reduced PPARG2 levels but not the 29% increased fiber MCSA, with media injection. CONCLUSION: In a sheep model, injection of autologous MSCs in degenerated rotator cuff muscle halted muscle-to-fat conversion during recovery from tendon repair by preserving fat-free mass in association with extracellular reactions and stopping adjuvant-induced muscle fiber hypertrophy. CLINICAL RELEVANCE: A relatively small dose of MSCs is therapeutically effective to halt fatty atrophy in a large animal model.


Asunto(s)
Células Madre Mesenquimatosas , Lesiones del Manguito de los Rotadores , Animales , Atrofia/patología , Atrofia Muscular/patología , Manguito de los Rotadores/patología , Manguito de los Rotadores/cirugía , Lesiones del Manguito de los Rotadores/patología , Lesiones del Manguito de los Rotadores/cirugía , Ovinos , Tendones/patología , Tenotomía
11.
Cells ; 10(3)2021 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-33800866

RESUMEN

Primary hemostasis consists in the activation of platelets, which spread on the exposed extracellular matrix at the injured vessel surface. Secondary hemostasis, the coagulation cascade, generates a fibrin clot in which activated platelets and other blood cells get trapped. Active platelet-dependent clot retraction reduces the clot volume by extruding the serum. Thus, the clot architecture changes with time of contraction, which may have an important impact on the healing process and the dissolution of the clot, but the precise physiological role of clot retraction is still not completely understood. Since platelets are the only actors to develop force for the retraction of the clot, their distribution within the clot should influence the final clot architecture. We analyzed platelet distributions in intracoronary thrombi and observed that platelets and fibrin co-accumulate in the periphery of retracting clots in vivo. A computational mechanical model suggests that asymmetric forces are responsible for a different contractile behavior of platelets in the periphery versus the clot center, which in turn leads to an uneven distribution of platelets and fibrin fibers within the clot. We developed an in vitro clot retraction assay that reproduces the in vivo observations and follows the prediction of the computational model. Our findings suggest a new active role of platelet contraction in forming a tight fibrin- and platelet-rich boundary layer on the free surface of fibrin clots.


Asunto(s)
Coagulación Sanguínea , Plaquetas/química , Fibrina/química , Trombosis Intracraneal/patología , Modelos Estadísticos , Fenómenos Biomecánicos , Plaquetas/patología , Retracción del Coagulo , Simulación por Computador , Fibrina/ultraestructura , Humanos , Trombosis Intracraneal/cirugía , Intervención Coronaria Percutánea/métodos
12.
Artif Organs ; 34(6): E184-92, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20482708

RESUMEN

Cell transplantation presents great potential for treatment of patients with severe heart failure. However, its clinical application was revealed to be more challenging than initially expected in experimental studies. Further investigations need to be undertaken to define the optimal treatment conditions. We previously reported on the epicardial implantation of a bio-engineered construct of skeletal myoblast-seeded polyurethane and its preventive effect on progression toward heart failure. In the present study, we present a long-term evaluation of this functional outcome. Left anterior descending coronary ligation was performed in female Lewis rats. Two weeks later, animals were treated with either epicardial implantation of biograft, acellular scaffold, sham operation, or direct intramyocardial skeletal myoblast injection. Functional assessments were performed with serial echocardiographies every 3 months and end point left ventricle pressure was assessed. Hearts were then harvested for histological examinations. Myocardial infarction induced a slow and progressive reduction in fractional shortening after 3 months. Progression toward heart failure was significantly prevented for up to 6 months after injection of myoblasts and for up to 9 months following biograft implantation. Nevertheless, this effect vanished after 12 months, with immunohistological examinations revealing an absence of the transplanted myoblasts within the scaffold. We demonstrated that tissue therapy is superior to cell therapy for stabilization of heart function. However, beneficial effects are transient.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Mioblastos Esqueléticos/trasplante , Infarto del Miocardio/terapia , Andamios del Tejido/química , Función Ventricular Izquierda , Animales , Células Cultivadas , Ecocardiografía , Femenino , Hemodinámica , Miocardio/patología , Poliuretanos/química , Ratas , Ratas Endogámicas Lew
13.
Circulation ; 118(19): 1920-8, 2008 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-18936330

RESUMEN

BACKGROUND: Reperfusion injury is insufficiently addressed in current clinical management of acute limb ischemia. Controlled reperfusion carries an enormous clinical potential and was tested in a new reality-driven rodent model. METHODS AND RESULTS: Acute hind-limb ischemia was induced in Wistar rats and maintained for 4 hours. Unlike previous tourniquets models, femoral vessels were surgically prepared to facilitate controlled reperfusion and to prevent venous stasis. Rats were randomized into an experimental group (n=7), in which limbs were selectively perfused with a cooled isotone heparin solution at a limited flow rate before blood flow was restored, and a conventional group (n=7; uncontrolled blood reperfusion). Rats were killed 4 hours after blood reperfusion. Nonischemic limbs served as controls. Ischemia/reperfusion injury was significant in both groups; total wet-to-dry ratio was 159+/-44% of normal (P=0.016), whereas muscle viability and contraction force were reduced to 65+/-13% (P=0.016) and 45+/-34% (P=0.045), respectively. Controlled reperfusion, however, attenuated reperfusion injury significantly. Tissue edema was less pronounced (132+/-16% versus 185+/-42%; P=0.011) and muscle viability (74+/-11% versus 57+/-9%; P=0.004) and contraction force (68+/-40% versus 26+/-7%; P=0.045) were better preserved than after uncontrolled reperfusion. Moreover, subsequent blood circulation as assessed by laser Doppler recovered completely after controlled reperfusion but stayed durably impaired after uncontrolled reperfusion (P=0.027). CONCLUSIONS: Reperfusion injury was significantly alleviated by basic modifications of the initial reperfusion period in a new in vivo model of acute limb ischemia. With this model, systematic optimizations of according protocols may eventually translate into improved clinical management of acute limb ischemia.


Asunto(s)
Modelos Animales de Enfermedad , Miembro Posterior/irrigación sanguínea , Ratas Wistar , Daño por Reperfusión/prevención & control , Daño por Reperfusión/fisiopatología , Enfermedad Aguda , Animales , Anticoagulantes/farmacología , Edema/tratamiento farmacológico , Edema/fisiopatología , Edema/prevención & control , Femenino , Arteria Femoral/diagnóstico por imagen , Arteria Femoral/fisiología , Arteria Femoral/cirugía , Heparina/farmacología , Flujometría por Láser-Doppler , Masculino , Contracción Muscular , Enfermedades Vasculares Periféricas/tratamiento farmacológico , Enfermedades Vasculares Periféricas/fisiopatología , Enfermedades Vasculares Periféricas/prevención & control , Síndrome Postrombótico/tratamiento farmacológico , Síndrome Postrombótico/fisiopatología , Síndrome Postrombótico/prevención & control , Ratas , Flujo Sanguíneo Regional , Daño por Reperfusión/tratamiento farmacológico , Torniquetes , Ultrasonografía
14.
Artif Organs ; 32(9): 692-700, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18684206

RESUMEN

Tissue engineering represents an attractive approach for the treatment of congestive heart failure. The influence of the differentiation of myogenic graft for functional recovery is not defined. We engineered a biodegradable skeletal muscle graft (ESMG) tissue and investigated its functional effect after implantation on the epicardium of an infarcted heart segment. ESMGs were synthesized by mixing collagen (2 mg/mL), Matrigel (2 mg/mL), and rat skeletal muscle cells (10(6)). Qualitative and quantitative aspects of ESMGs were optimized. Two weeks following coronary ligation, the animals were randomized in three groups: ESMG glued to the epicardial surface with fibrin (ESMG, n = 7), fibrin alone (fibrin, n = 5), or sham operation (sham, n = 4). Echocardiography, histology, and immunostaining were performed 4 weeks later. A cohesive three-dimensional tissular structure formed in vitro within 1 week. Myoblasts differentiated into randomly oriented myotubes. Four weeks postimplantation, ESMGs were vascularized and invaded by granulation tissue. Mean fractional shortening (FS) was, however, significantly increased in the ESMG group as compared with preimplantation values (42 +/- 6 vs. 33 +/- 5%, P < 0.05) and reached the values of controlled noninfarcted animals (control, n = 5; 45 +/- 3%; not significant). Pre- and postimplantation FS did not change over these 4 weeks in the sham group and the fibrin-treated animals. This study showed that it is possible to improve systolic heart function following myocardial infarction through implantation of differentiated muscle fibers seeded on a gel-type scaffold despite a low rate of survival.


Asunto(s)
Corazón/efectos de los fármacos , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Músculo Esquelético/trasplante , Infarto del Miocardio/terapia , Animales , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Colágeno/síntesis química , Combinación de Medicamentos , Femenino , Corazón/fisiopatología , Hidrogel de Polietilenoglicol-Dimetacrilato/síntesis química , Laminina/síntesis química , Fibras Musculares Esqueléticas , Músculo Esquelético/citología , Músculo Esquelético/crecimiento & desarrollo , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/trasplante , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/fisiopatología , Proteoglicanos/síntesis química , Distribución Aleatoria , Ratas , Técnicas de Cultivo de Tejidos/métodos , Trasplantes , Ultrasonografía
15.
Tissue Eng ; 13(8): 1825-36, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17518754

RESUMEN

Myocardial tissue engineering aims to repair, replace, and regenerate damaged cardiac tissue using tissue constructs created ex vivo. This approach may one day provide a full treatment for several cardiac disorders, including congenital diseases or ventricular dysfunction after myocardial infarction. Although the ex vivo construction of a myocardium-like tissue is faced with many challenges, it is nevertheless a pressing objective for cardiac reparative medicine. Multidisciplinary efforts have already led to the development of promising viable muscle constructs. In this article, we review the various concepts of cardiac tissue engineering and their specific challenges. We also review the different types of existing biografts and their physiological relevance. Although many investigators have favored cardiomyocytes, we discuss the potential of other clinically relevant cells, as well as the various hypotheses proposed to explain the functional benefit of cell transplantation.


Asunto(s)
Cardiopatías/terapia , Miocardio , Ingeniería de Tejidos/métodos , Ingeniería de Tejidos/tendencias , Animales , Humanos , Mioblastos , Miocitos Cardíacos
16.
J Vis Exp ; (128)2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28994792

RESUMEN

Acute coronary syndrome resulting from coronary occlusion following atherosclerotic plaque development and rupture is the leading cause of death in the industrialized world. New Zealand White (NZW) rabbits are widely used as an animal model for the study of atherosclerosis. They develop spontaneous lesions when fed with atherogenic diet; however, this requires long time of 4 - 8 months. To further enhance and accelerate atherogenesis, a combination of atherogenic diet and mechanical endothelial injury is often employed. The presented procedure for inducing atherosclerotic plaques in rabbits uses a balloon catheter to disrupt the endothelium in the left iliac artery of NZW rabbits fed with atherogenic diet. Such mechanical damage caused by the balloon catheter induces a chain of inflammatory reactions initiating neointimal lipid accumulation in a time dependent fashion. Atherosclerotic plaque following balloon injury show neointimal thickening with extensive lipid infiltration, high smooth muscle cell content and presence of macrophage derived foam cells. This technique is simple, reproducible and produces plaque of controlled length within the iliac artery. The whole procedure is completed within 20 - 30 min. The procedure is safe with low mortality and also offers high success in obtaining substantial intimal lesions. The procedure of balloon catheter induced arterial injury results in atherosclerosis within two weeks. This model can be used for investigating the disease pathology, diagnostic imaging and to evaluate new therapeutic strategies.


Asunto(s)
Aterosclerosis/etiología , Aterosclerosis/patología , Oclusión con Balón/métodos , Modelos Animales de Enfermedad , Arteria Ilíaca/lesiones , Arteria Ilíaca/patología , Animales , Inflamación/patología , Masculino , Conejos
17.
Cardiovasc Ther ; 35(2)2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27893195

RESUMEN

Acute coronary syndrome is a life-threatening condition of utmost clinical importance, which, despite recent progress in the field, is still associated with high morbidity and mortality. Acute coronary syndrome results from a rupture or erosion of vulnerable atherosclerotic plaque with secondary platelet activation and thrombus formation, which leads to partial or complete luminal obstruction of a coronary artery. During the last decade, scientific evidence demonstrated that when an acute coronary event occurs, several nonculprit plaques are in a "vulnerable" state. Among the promising approaches, several investigations provided evidence of photodynamic therapy (PDT)-induced stabilization and regression of atherosclerotic plaque. Significant development of PDT strategies improved its therapeutic outcome. This review addresses PDT's pertinence and major problems/challenges toward its translation to a clinical reality.


Asunto(s)
Síndrome Coronario Agudo/tratamiento farmacológico , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Vasos Coronarios/efectos de los fármacos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/uso terapéutico , Placa Aterosclerótica , Investigación Biomédica Traslacional , Síndrome Coronario Agudo/diagnóstico por imagen , Síndrome Coronario Agudo/patología , Animales , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/patología , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/patología , Humanos , Fotoquimioterapia/efectos adversos , Fármacos Fotosensibilizantes/efectos adversos , Rotura Espontánea , Nanomedicina Teranóstica/métodos , Resultado del Tratamiento
18.
J Vis Exp ; (118)2016 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-28060356

RESUMEN

Myocardial infarction is defined as cardiomyocyte death due to prolonged ischemia; an inflammatory response and scar formation (fibrosis) follow the ischemic injury. Following the initial acute phase, chronic remodeling of the left ventricle (LV) modifies the structure and function of the heart. Permanent coronary ligation in small animals has been widely used as a reference model for a chronic model of MI. Thinning of the infarcted wall progressively develops to transmural fibrosis. Histological assessment of infarct size is commonly performed; nevertheless, a standardization of the methods for quantification is missing. Indeed, important methodological aspects, such as the number of sections analyzed and the sampling and quantification methods, are usually not described and therefore preclude comparison across investigations. Too often, quantification is performed on a single section obtained at the level of the papillary muscles. Because novel strategies aimed at reducing infarct expansion and remodeling are under investigation, there is an important need for the standardization of accurate heart sampling protocols. We describe an accurate method to quantify the infarct size using a systematic sampling of harvested rat heart and image analyses of trichromatic stained histological sections obtained from base to apex. We also provide evidence that calculating the expansion index (EI) allowed for infarct size assessment, taking into account changes of the left ventricle throughout the remodeling.


Asunto(s)
Fibrosis/patología , Infarto del Miocardio/patología , Animales , Ventrículos Cardíacos , Hipertrofia Ventricular Izquierda/etiología , Infarto del Miocardio/fisiopatología , Músculos Papilares , Ratas , Función Ventricular Izquierda/fisiología , Remodelación Ventricular
19.
Front Physiol ; 7: 400, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27672369

RESUMEN

UNLABELLED: Photodynamic therapy (PDT), which is based on the activation of photosensitizers with light, can be used to reduce plaque burden. We hypothesized that intra-arterial photosensitizer administration and photo-activation will lead to high and rapid accumulation within the plaque with reduced systemic adverse effects. Thus, this "intra-arterial" PDT would be expected to have less side effects and due to the short time involved would be compatible with percutaneous coronary interventions. AIM: We characterized the dose-dependent uptake and efficacy of intra-arterial PDT using Liposomal Verteporfin (Visudyne®), efficient for cancer-PDT but not tested before for PDT of atherosclerosis. METHODS AND RESULTS: Visudyne® (100, 200, and 500 ng/ml) was perfused for 5-30 min in atherosclerotic aorta isolated from ApoE(-/-) mice. The fluorescence Intensity (FI) after 15 min of Visudyne® perfusion increased with doses of 100 (FI-5.5 ± 1.8), 200 (FI-31.9 ± 1.9) or 500 ng/ml (FI-42.9 ± 1.2). Visudyne® (500 ng/ml) uptake also increased with the administration time from 5 min (FI-9.8 ± 2.5) to 10 min (FI-23.3 ± 3.0) and 15 min (FI-42.9 ± 3.4) before reaching saturation at 30 min (FI-39.3 ± 2.4) contact. Intra-arterial PDT (Fluence: 100 and 200 J/cm(2), irradiance-334 mW/cm(2)) was applied immediately after Visudyne® perfusion (500 ng/ml for 15 min) using a cylindrical light diffuser coupled to a diode laser (690 nm). PDT led to an increase of ROS (Dihydroethidium; FI-6.9 ± 1.8, 25.3 ± 5.5, 43.4 ± 13.9) and apoptotic cells (TUNEL; 2.5 ± 1.6, 41.3 ± 15.3, 58.9 ± 6%), mainly plaque macrophages (immunostaining; 0.3 ± 0.2, 37.6 ± 6.4, 45.3 ± 5.4%) respectively without laser irradiation, or at 100 and 200 J/cm(2). Limited apoptosis was observed in the medial wall (0.5 ± 0.2, 8.5 ± 4.7, 15.3 ± 12.7%). Finally, Visudyne®-PDT was found to be associated with reduced vessel functionality (Myogram). CONCLUSION: We demonstrated that sufficient accumulation of Visudyne® within plaque could be achieved in short-time and therefore validated the feasibility of local intravascular administration of photosensitizer. Intra-arterial Visudyne®-PDT preferentially affected plaque macrophages and may therefore alter the dynamic progression of plaque development.

20.
Biochim Biophys Acta ; 1593(2-3): 239-48, 2003 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-12581868

RESUMEN

The intracellular mechanisms controlling mechano-dependent production of the two extracellular matrix proteins collagen XII and fibronectin were analyzed. Fibroblasts were cultured on either tensed (attached) or released (floating) collagen type-I gels, respectively. Collagen XII and fibronectin production was three- to fivefold higher under tensed than under released conditions. The general inhibitor of tyrosine phosphorylation, genistein (50 microM), and the MAP kinase inhibitor PD98059 (20 microM) selectively reduced collagen XII accumulation by tensed cultures. Addition of PD98059, but not genistein, downregulated tensile stress-induced tyrosine phosphorylation levels of ERK1/2 and focal adhesion kinase. Staurosporine as well as pretreatment with phorbol ester, which constitute means to downregulate classical and novel PKC activity, specifically blocked collagen XII but not fibronectin accumulation in tensed fibroblasts. ERK1/2 phosphorylation levels were not affected by staurosporine treatment. Chronic exposure to the protein kinase C inhibitors bisindolylmaleimide and calphostin C blocked increased production of both fibronectin and collagen XII from cells under tension. The data manifest that the mechano-dependent production of collagen XII and fibronectin requires separate pathways. The FAK-ERK1/2 pathway, a genistein-sensitive tyrosine kinase, and a distinct classical/novel PKC appear selectively required for increased production of collagen XII in cells under tensile stress, whereas fibronectin induction is regulated by a different PKC-dependent pathway.


Asunto(s)
Colágeno Tipo XII/biosíntesis , Fibroblastos/metabolismo , Fibronectinas/biosíntesis , Animales , Embrión de Pollo , Colágeno Tipo XII/química , Fibronectinas/química , Geles , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA