Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37108703

RESUMEN

Most kinase inhibitors are designed to bind to highly homologous ATP-binding sites, which leads to promiscuity and possible off-target effects. Allostery is an alternative approach to pursuing selectivity. However, allostery is difficult to exploit due to the wide variety of underlying mechanisms and the potential involvement of long-range conformational effects that are difficult to pinpoint. GSK-3ß is involved in several pathologies. This critical target has an ATP-binding site that is highly homologous with the orthosteric sites of other kinases. Unsurprisingly, there is also great similarity between the ATP-binding sites of GSK-3ß and its isomer, which is not redundant and thus would benefit from selective inhibition. Allostery would also allow for a moderate and tunable inhibition, which is ideal for GSK-3ß, because this target is involved in multiple pathways, some of which must be preserved. However, despite considerable research efforts, only one allosteric GSK-3ß inhibitor has reached the clinic. Moreover, unlike other kinases, there are no X-ray structures of GSK-3ß in complex with allosteric inhibitors in the PDB data bank. This review aims to summarize the state of the art in allosteric GSK-3ß inhibitor investigations, highlighting the aspects that make this target challenging for an allosteric approach.


Asunto(s)
Adenosina Trifosfato , Inhibidores de Proteínas Quinasas , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Inhibidores de Proteínas Quinasas/química , Sitios de Unión , Adenosina Trifosfato/metabolismo
2.
Angew Chem Int Ed Engl ; 62(51): e202312517, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37924230

RESUMEN

DNA repair protein RAD51 is a key player in the homologous recombination pathway. Upon DNA damage, RAD51 is transported into the nucleus by BRCA2, where it can repair DNA double-strand breaks. Due to the structural complexity and dynamics, researchers have not yet clarified the mechanistic details of every step of RAD51 recruitment and DNA repair. RAD51 possesses an intrinsic tendency to form oligomeric structures, which make it challenging to conduct biochemical and biophysical investigations. Here, for the first time, we report on the isolation and characterization of a human monomeric RAD51 recombinant form, obtained through a double mutation, which preserves the protein's integrity and functionality. We investigated different buffers to identify the most suitable condition needed to definitively stabilize the monomer. The monomer of human RAD51 provides the community with a unique biological tool for investigating RAD51-mediated homologous recombination, and paves the way for more reliable structural, mechanistic, and drug discovery studies.


Asunto(s)
Recombinación Homóloga , Neoplasias , Recombinasa Rad51 , Proteínas Recombinantes , Humanos , Daño del ADN , Reparación del ADN , Neoplasias/genética , Recombinasa Rad51/química , Recombinasa Rad51/genética , Recombinasa Rad51/aislamiento & purificación , Mutación , Estabilidad Proteica , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
3.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35409221

RESUMEN

Glycogen synthase kinase 3 beta (GSK-3ß) is an evolutionarily conserved serine-threonine kinase dysregulated in numerous pathologies, such as Alzheimer's disease and cancer. Even though GSK-3ß is a validated pharmacological target most of its inhibitors have two main limitations: the lack of selectivity due to the high homology that characterizes the ATP binding site of most kinases, and the toxicity that emerges from GSK-3ß complete inhibition which translates into the impairment of the plethora of pathways GSK-3ß is involved in. Starting from a 1D 19F NMR fragment screening, we set up several biophysical assays for the identification of GSK-3ß inhibitors capable of binding protein hotspots other than the ATP binding pocket or to the ATP binding pocket, but with an affinity able of competing with a reference binder. A phosphorylation activity assay on a panel of several kinases provided selectivity data that were further rationalized and corroborated by structural information on GSK-3ß in complex with the hit compounds. In this study, we identified promising fragments, inhibitors of GSK-3ß, while proposing an alternative screening workflow that allows facing the flaws that characterize the most common GSK-3ß inhibitors through the identification of selective inhibitors and/or inhibitors able to modulate GSK-3ß activity without leading to its complete inhibition.


Asunto(s)
Enfermedad de Alzheimer , Adenosina Trifosfato/metabolismo , Enfermedad de Alzheimer/metabolismo , Sitios de Unión , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Fosforilación
4.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35955488

RESUMEN

The cytotoxic action of anticancer drugs can be potentiated by inhibiting DNA repair mechanisms. RAD51 is a crucial protein for genomic stability due to its critical role in the homologous recombination (HR) pathway. BRCA2 assists RAD51 fibrillation and defibrillation in the cytoplasm and nucleus and assists its nuclear transport. BRC4 is a peptide derived from the fourth BRC repeat of BRCA2, and it lacks the nuclear localization sequence. Here, we used BRC4 to (i) reverse RAD51 fibrillation; (ii) avoid the nuclear transport of RAD51; and (iii) inhibit HR and enhance the efficacy of chemotherapeutic treatments. Specifically, using static and dynamic light scattering, transmission electron microscopy, and microscale thermophoresis, we show that BRC4 eroded RAD51 fibrils from their termini through a "domino" mechanism and yielded monomeric RAD51 with a cumulative nanomolar affinity. Using cellular assays (BxPC-3, pancreatic cancer), we show that a myristoylated BRC4 (designed for a more efficient cell entry) abolished the formation of nuclear RAD51 foci. The present study provides a molecular description of RAD51 defibrillation, an essential step in BRCA2-mediated homologous recombination and DNA repair.


Asunto(s)
Proteína BRCA2 , Recombinasa Rad51 , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Reparación del ADN , Recombinación Homóloga , Péptidos/genética , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo
5.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(5): 441-451, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28088576

RESUMEN

Human monoacylglycerol lipase (MAGL) is a membrane-interacting enzyme that generates pro-inflammatory signaling molecules. For this reason, MAGL inhibition is a promising strategy to treat pain, cancer, and neuroinflammatory diseases. MAGL can hydrolyze monoacylglycerols bearing an acyl chain of different lengths and degrees of unsaturation, cleaving primarily the endocannabinoid 2-arachidonoylglycerol. Importantly, the enzymatic binding site of MAGL is confined by a 75-amino-acid-long, flexible cap domain, named 'lid domain', which is structurally similar to that found in several other lipases. However, it is unclear how lid domain plasticity affects catalysis in MAGL. By integrating extensive molecular dynamics simulations and free-energy calculations with mutagenesis and kinetic experiments, we here define a lid-domain-mediated mechanism for substrate selection and binding in MAGL catalysis. In particular, we clarify the key role of Phe159 and Ile179, two conserved residues within the lid domain, in regulating substrate specificity in MAGL. We conclude by proposing that other structurally related lipases may share this lid-domain-mediated mechanism for substrate specificity.


Asunto(s)
Monoacilglicerol Lipasas/química , Monoacilglicerol Lipasas/metabolismo , Monoglicéridos/química , Catálisis , Inhibidores Enzimáticos/química , Humanos , Cinética , Simulación de Dinámica Molecular , Monoacilglicerol Lipasas/genética , Monoglicéridos/metabolismo , Unión Proteica , Dominios Proteicos , Especificidad por Sustrato
6.
FASEB J ; 29(6): 2484-94, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25713058

RESUMEN

α-Synuclein (aS) aggregation has been amply investigated for its involvement in Parkinson's disease because its amyloid fibrils are the main constituent of Lewy bodies, one of the hallmarks of the disease. aS aggregation was studied here in vitro and in cellular models to correlate aggregation products with toxicity mechanisms. Independent results published elsewhere suggested that aS overexpression and/or aggregation may impair cellular metabolism and cause mitochondrial damage. In this context, we report the characterization of changes in NADH fluorescence properties in vitro and in human embryonic kidney 293 cells upon aS aggregation. The application of the phasor approach to study NADH fluorescence lifetime and emission allowed us to identify changes that correlate with aS aggregation. In particular, the fraction of bound NADH, characterized by longer lifetimes in comparison to free NADH, is increased, and the maximum of the NADH emission is shifted toward shorter wavelengths in the presence of aggregating aS both in vitro and in cells. These data suggest that NADH binds to aggregated aS. NMR experiments in vitro substantiate such binding, which occurs during aggregation. NADH fluorescence is thus useful to detect aS aggregation and by extension the associated oxidative stress.


Asunto(s)
Fluorescencia , NAD/química , Agregado de Proteínas , alfa-Sinucleína/química , Células HEK293 , Humanos , Cuerpos de Lewy/química , Cuerpos de Lewy/metabolismo , Cuerpos de Lewy/ultraestructura , Espectroscopía de Resonancia Magnética , Microscopía Confocal , Microscopía Electrónica de Transmisión , Modelos Biológicos , NAD/metabolismo , NAD/ultraestructura , Enfermedad de Parkinson/metabolismo , Unión Proteica , Espectrometría de Fluorescencia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
7.
PLoS Comput Biol ; 11(6): e1004231, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26111155

RESUMEN

The fatty acid amide hydrolase (FAAH) regulates the endocannabinoid system cleaving primarily the lipid messenger anandamide. FAAH has been well characterized over the years and, importantly, it represents a promising drug target to treat several diseases, including inflammatory-related diseases and cancer. But its enzymatic mechanism for lipid selection to specifically hydrolyze anandamide, rather than similar bioactive lipids, remains elusive. Here, we clarify this mechanism in FAAH, examining the role of the dynamic paddle, which is formed by the gating residues Phe432 and Trp531 at the boundary between two cavities that form the FAAH catalytic site (the "membrane-access" and the "acyl chain-binding" pockets). We integrate microsecond-long MD simulations of wild type and double mutant model systems (Phe432Ala and Trp531Ala) of FAAH, embedded in a realistic membrane/water environment, with mutagenesis and kinetic experiments. We comparatively analyze three fatty acid substrates with different hydrolysis rates (anandamide > oleamide > palmitoylethanolamide). Our findings identify FAAH's mechanism to selectively accommodate anandamide into a multi-pocket binding site, and to properly orient the substrate in pre-reactive conformations for efficient hydrolysis that is interceded by the dynamic paddle. Our findings therefore endorse a structural framework for a lipid selection mechanism mediated by structural flexibility and gating residues between multiple binding cavities, as found in FAAH. Based on the available structural data, this exquisite catalytic strategy for substrate specificity seems to be shared by other lipid-degrading enzymes with similar enzymatic architecture. The mechanistic insights for lipid selection might assist de-novo enzyme design or drug discovery efforts.


Asunto(s)
Amidohidrolasas/química , Amidohidrolasas/metabolismo , Ácidos Araquidónicos/química , Ácidos Araquidónicos/metabolismo , Endocannabinoides/química , Endocannabinoides/metabolismo , Alcamidas Poliinsaturadas/química , Alcamidas Poliinsaturadas/metabolismo , Amidohidrolasas/genética , Sitios de Unión , Catálisis , Biología Computacional , Humanos , Simulación de Dinámica Molecular , Mutación , Conformación Proteica
8.
J Biol Chem ; 289(15): 10887-10899, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24567322

RESUMEN

Lack of oxidative stress control is a common and often prime feature observed in many neurodegenerative diseases. Both DJ-1 and SOD1, proteins involved in familial Parkinson disease and amyotrophic lateral sclerosis, respectively, play a protective role against oxidative stress. Impaired activity and modified expression of both proteins have been observed in different neurodegenerative diseases. A potential cooperative action of DJ-1 and SOD1 in the same oxidative stress response pathway may be suggested based on a copper-mediated interaction between the two proteins reported here. To investigate the mechanisms underlying the antioxidative function of DJ-1 in relation to SOD1 activity, we investigated the ability of DJ-1 to bind copper ions. We structurally characterized a novel copper binding site involving Cys-106, and we investigated, using different techniques, the kinetics of DJ-1 binding to copper ions. The copper transfer between the two proteins was also examined using both fluorescence spectroscopy and specific biochemical assays for SOD1 activity. The structural and functional analysis of the novel DJ-1 copper binding site led us to identify a putative role for DJ-1 as a copper chaperone. Alteration of the coordination geometry of the copper ion in DJ-1 may be correlated to the physiological role of the protein, to a potential failure in metal transfer to SOD1, and to successive implications in neurodegenerative etiopathogenesis.


Asunto(s)
Cobre/química , Regulación Enzimológica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Oncogénicas/metabolismo , Superóxido Dismutasa/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Cisteína/química , ADN Complementario/metabolismo , Humanos , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Estrés Oxidativo , Enfermedad de Parkinson/metabolismo , Peroxirredoxinas/química , Unión Proteica , Conformación Proteica , Proteína Desglicasa DJ-1 , Espectrometría de Fluorescencia , Superóxido Dismutasa-1
9.
Angew Chem Int Ed Engl ; 54(2): 485-9, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25395373

RESUMEN

The ceramides are a family of bioactive lipid-derived messengers involved in the control of cellular senescence, inflammation, and apoptosis. Ceramide hydrolysis by acid ceramidase (AC) stops the biological activity of these substances and influences survival and function of normal and neoplastic cells. Because of its central role in the ceramide metabolism, AC may offer a novel molecular target in disorders with dysfunctional ceramide-mediated signaling. Here, a class of benzoxazolone carboxamides is identified as the first potent and systemically active inhibitors of AC. Prototype members of this class inhibit AC with low nanomolar potency by covalent binding to the catalytic cysteine. Their metabolic stability and high in vivo efficacy suggest that these compounds may be used as probes to investigate the roles of ceramide in health and disease, and that this scaffold may represent a promising starting point for the development of novel therapeutic agents.


Asunto(s)
Amidas/química , Benzoxazoles/química , Ceramidasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología
10.
J Med Chem ; 67(12): 10401-10424, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38866385

RESUMEN

We previously reported trisubstituted pyrimidine lead compounds, namely, ARN22089 and ARN25062, which block the interaction between CDC42 with its specific downstream effector, a PAK protein. This interaction is crucial for the progression of multiple tumor types. Such inhibitors showed anticancer efficacy in vivo. Here, we describe a second class of CDC42 inhibitors with favorable drug-like properties. Out of the 25 compounds here reported, compound 15 (ARN25499) stands out as the best lead compound with an improved pharmacokinetic profile, increased bioavailability, and efficacy in an in vivo PDX tumor mouse model. Our results indicate that these CDC42 inhibitors represent a promising chemical class toward the discovery of anticancer drugs, with ARN25499 as an additional lead candidate for preclinical development.


Asunto(s)
Antineoplásicos , Proteína de Unión al GTP cdc42 , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Antineoplásicos/química , Humanos , Ratones , Proteína de Unión al GTP cdc42/antagonistas & inhibidores , Proteína de Unión al GTP cdc42/metabolismo , Línea Celular Tumoral , Descubrimiento de Drogas , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto , Pirimidinas/farmacocinética , Pirimidinas/química , Pirimidinas/farmacología , Pirimidinas/síntesis química , Femenino
11.
Eur J Med Chem ; 265: 116114, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38194775

RESUMEN

The BRCA2-RAD51 interaction remains an intriguing target for cancer drug discovery due to its vital role in DNA damage repair mechanisms, which cancer cells become particularly reliant on. Moreover, RAD51 has many synthetically lethal partners, including PARP1-2, which can be exploited to induce synthetic lethality in cancer. In this study, we established a 19F-NMR-fragment based approach to identify RAD51 binders, leading to two initial hits. A subsequent SAR program identified 46 as a low micromolar inhibitor of the BRCA2-RAD51 interaction. 46 was tested in different pancreatic cancer cell lines, to evaluate its ability to inhibit the homologous recombination DNA repair pathway, mediated by BRCA2-RAD51 and trigger synthetic lethality in combination with the PARP inhibitor talazoparib, through the induction of apoptosis. Moreover, we further analyzed the 46/talazoparib combination in 3D pancreatic cancer models. Overall, 46 showed its potential as a tool to evaluate the RAD51/PARP1-2 synthetic lethality mechanism, along with providing a prospect for further inhibitors development.


Asunto(s)
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Antineoplásicos/química , Proteína BRCA2/antagonistas & inhibidores , Proteína BRCA2/metabolismo , Línea Celular Tumoral , Reparación del ADN , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Recombinasa Rad51/antagonistas & inhibidores , Recombinasa Rad51/metabolismo , Mutaciones Letales Sintéticas
12.
J Biol Chem ; 287(22): 18738-49, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22431735

RESUMEN

The physiological role of DJ-1, a protein involved in familial Parkinson disease is still controversial. One of the hypotheses proposed indicates a sensor role for oxidative stress, through oxidation of a conserved cysteine residue (Cys-106). The association of DJ-1 mutations with Parkinson disease suggests a loss of function, specific to dopaminergic neurons. Under oxidative conditions, highly reactive dopamine quinones (DAQs) can be produced, which can modify cysteine residues. In cellular models, DJ-1 was found covalently modified by dopamine. We analyzed the structural modifications induced on human DJ-1 by DAQs in vitro. We described the structural perturbations induced by DAQ adduct formation on each of the three cysteine residues of DJ-1 using specific mutants. Cys-53 is the most reactive residue and forms a covalent dimer also in SH-SY5Y DJ-1-transfected cells, but modification of Cys-106 induces the most severe structural perturbations; Cys-46 is not reactive. The relevance of these covalent modifications to the several functions ascribed to DJ-1 is discussed in the context of the cell response to a dopamine-derived oxidative insult.


Asunto(s)
Cisteína/química , Dopamina/farmacología , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas Oncogénicas/química , Quinonas/farmacología , Línea Celular Tumoral , Dopamina/química , Humanos , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Oxidación-Reducción , Conformación Proteica , Proteína Desglicasa DJ-1 , Quinonas/química
13.
J Biol Inorg Chem ; 18(1): 81-93, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23111628

RESUMEN

Elucidating the structure and biosynthesis of neuromelanin (NM) would be an important step towards understanding its putative role in the pathogenesis of Parkinson's disease. A useful complement to studies aimed at unraveling the origin and properties of this essentially insoluble natural substance is the preparation of synthetic derivatives that resemble NM. With this aim in mind, water-soluble conjugates between dopamine-derived melanin and bovine serum albumin (BSA) were synthesized. Melanin-BSA adducts were prepared with both eumelanic oligomers obtained through the oxidative polymerization of dopamine and pheomelanic oligomers obtained under the same conditions from dopamine and cysteine. Iron ions were added during the synthesis to understand the interaction between the pigment and this metal ion, as the NM in neurons in several human brain regions contains significant amounts of iron. The structures of the conjugates were analyzed by (1)H NMR spectroscopy and controlled proteolysis/MS experiments. The binding of iron(III) ions was evaluated by ICP analysis and EPR spectroscopy. The EPR signal from bound iron(III) indicated high-spin octahedral sites and, as also seen for NM, the signal is coupled to a signal from a radical associated with the melanic components of the conjugates. However, the intensity of the EPR signal from iron suggested a reduced fraction of the total iron, indicating that most of the iron is strongly coupled in clusters within the matrix. The amount of paramagnetic, mononuclear iron(III) was greater in the pheomelanin-BSA conjugates, suggesting that iron clustering is reduced in the sulfur-containing pigment. Thus, the melanin-BSA conjugates appear to be good models for the natural pigment.


Asunto(s)
Melaninas/química , Melaninas/síntesis química , Animales , Bovinos , Técnicas de Química Sintética , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Hierro/metabolismo , Melaninas/biosíntesis , Melaninas/metabolismo , Modelos Moleculares , Conformación Proteica , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Solubilidad
14.
Cancers (Basel) ; 15(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36980703

RESUMEN

In recent years, the RAD52 protein has been highlighted as a mediator of many DNA repair mechanisms. While RAD52 was initially considered to be a non-essential auxiliary factor, its inhibition has more recently been demonstrated to be synthetically lethal in cancer cells bearing mutations and inactivation of specific intracellular pathways, such as homologous recombination. RAD52 is now recognized as a novel and critical pharmacological target. In this review, we comprehensively describe the available structural and functional information on RAD52. The review highlights the pathways in which RAD52 is involved and the approaches to RAD52 inhibition. We discuss the multifaceted role of this protein, which has a complex, dynamic, and functional 3D superstructural arrangement. This complexity reinforces the need to further investigate and characterize RAD52 to solve a challenging mechanistic puzzle and pave the way for a robust drug discovery campaign.

15.
J Proteomics ; 288: 104983, 2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37536521

RESUMEN

BRCA2 and RAD51 are two proteins that play a central role in homologous recombination (HR) and DNA double strand break (DSB) repair. BRCA2 assists RAD51 fibrillation and defibrillation through binding with its eight BRC repeats, with BRC4 being one of the most efficient and best characterized. RAD51 inactivation by small molecules has been proposed as a strategy to impair BRCA2/RAD51 binding and, ultimately, the HR pathway, with the aim of making cancer cells more sensitive to PARP inhibitors (PARPi). This strategy, which mimics a synthetic lethality (SL) approach, has been successfully performed in vitro by using the myristoylated derivative of BRC4 (myr-BRC4), designed for a more efficient cell entry. The present study applies a method to obtain a proteomic fingerprint after cellular treatment with the myr-BRC4 peptide using a mass spectroscopy (MS) proteomic approach. (Data are available via ProteomeXchange with identifier PXD042696.) We performed a comparative proteomic profiling of the myr-BRC4 treated vs. untreated BxPC-3 pancreatic cancer cells and evaluated the differential expression of proteins. Among the identified proteins, we focused our attention on proteins shared by both the RAD51 and the BRCA2 interactomes, and on those whose reduction showed high statistical significance. Three downregulated proteins were identified (FANCI, FANCD2, and RPA3), and protein downregulation was confirmed through immunoblotting analysis, validating the MS approach. Our results suggest that, being a direct consequence of myr-BRC4 treatment, the detection of FANCD2, FANCI, and RPA3 downregulation could be used as an indicator for monitoring HR impairment. SIGNIFICANCE: RAD51's inhibition has gained increasing attention because of its possible implications in personalized medicine through the SL approach. Chemical disruption of protein-protein interactions (PPIs) between RAD51 and BRCA2, or some of its partner proteins, could potentiate PARPi DNA damage-induced cell death. This could have application for difficult to treat cancers, such as BRCA-competent and olaparib (PARPi) resistant pancreatic adenocarcinoma. Despite RAD51 being a widely studied target, researchers still lack detailed mechanistic information. This has stifled progress in the field with only a few RAD51 inhibitors having been identified, none of which have gained regulatory approval. Nevertheless, the peptide BRC4 is one of the most specific and best characterized RAD51 binder and inhibitor reported to date. Our study is the first to report the proteomic fingerprint consequent to cellular treatment of myr-BRC4, to offer a reference for the discovery of specific protein/pathway alterations within DNA damage repair. Our results suggest that, being a direct consequence of myr-BRC4 treatment, and ultimately ofBRCA2/RAD51 disruption, the detection of FANCD2, FANCI, and RPA3 downregulation could be used as an indicator for monitoring DNA damage repair impairment and therefore be used to potentiate the development of new effective therapeutic strategies.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Recombinasa Rad51/química , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Proteómica , Péptidos/metabolismo , Neoplasias Pancreáticas
16.
J Med Chem ; 66(14): 9797-9822, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37440686

RESUMEN

In cystic fibrosis (CF), deletion of phenylalanine 508 (F508del) in the CF transmembrane conductance regulator (CFTR) is associated to misfolding and defective gating of the mutant channel. One of the most promising CF drug targets is the ubiquitin ligase RNF5, which promotes F508del-CFTR degradation. Recently, the first ever reported inhibitor of RNF5 was discovered, i.e., the 1,2,4-thiadiazol-5-ylidene inh-2. Here, we designed and synthesized a series of new analogues to explore the structure-activity relationships (SAR) of this class of compounds. SAR efforts ultimately led to compound 16, which showed a greater F508del-CFTR corrector activity than inh-2, good tolerability, and no toxic side effects. Analogue 16 increased the basal level of autophagy similar to what has been described with RNF5 silencing. Furthermore, co-treatment with 16 significantly improved the F508del-CFTR rescue induced by the triple combination elexacaftor/tezacaftor/ivacaftor in CFBE41o- cells. These findings validate the 1,2,4-thiadiazolylidene scaffold for the discovery of novel RNF5 inhibitors and provide evidence to pursue this unprecedented strategy for the treatment of CF.


Asunto(s)
Fibrosis Quística , Tiadiazoles , Humanos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Tiadiazoles/farmacología , Tiadiazoles/uso terapéutico , Ubiquitina-Proteína Ligasas/metabolismo , Relación Estructura-Actividad , Aminofenoles , Benzodioxoles/farmacología , Mutación , Proteínas de Unión al ADN/metabolismo
17.
J Med Chem ; 66(8): 5981-6001, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37026468

RESUMEN

CDC42 GTPases (RHOJ, CDC42, and RHOQ) are overexpressed in multiple tumor types and activate pathways critical for tumor growth, angiogenesis, and metastasis. Recently, we reported the discovery of a novel lead compound, ARN22089, which blocks the interaction of CDC42 GTPases with specific downstream effectors. ARN22089 blocks tumor growth in BRAF mutant mouse melanoma models and patient-derived xenografts (PDXs) in vivo. ARN22089 also inhibits tumor angiogenesis in three-dimensional vascularized microtumor models in vitro. Notably, ARN22089 belongs to a novel class of trisubstituted pyrimidines. Based on these results, we describe an extensive structure-activity relationship of ∼30 compounds centered on ARN22089. We discovered and optimized two novel inhibitors (27, ARN25062, and 28, ARN24928), which are optimal back-up/follow-up leads with favorable drug-like properties and in vivo efficacy in PDX tumors. These findings further demonstrate the potential of this class of CDC42/RHOJ inhibitors for cancer treatment, with lead candidates ready for advanced preclinical studies.


Asunto(s)
Neoplasias , Proteínas de Unión al GTP rho , Animales , Humanos , Ratones , Línea Celular Tumoral , Neovascularización Patológica , Quinasas p21 Activadas/metabolismo , Unión Proteica
18.
Proc Natl Acad Sci U S A ; 106(17): 6980-5, 2009 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-19369197

RESUMEN

The structural and dynamical properties of the metal-free form of WT human superoxide dismutase 1 (SOD1) and its familial amyotrophic lateral sclerosis (fALS)-related mutants, T54R and I113T, were characterized both in solution, through NMR, and in the crystal, through X-ray diffraction. We found that all 3 X-ray structures show significant structural disorder in 2 loop regions that are, at variance, well defined in the fully-metalated structures. Interestingly, the apo state crystallizes only at low temperatures, whereas all 3 proteins in the metalated form crystallize at any temperature, suggesting that crystallization selects one of the most stable conformations among the manifold adopted by the apo form in solution. Indeed, NMR experiments show that the protein in solution is highly disordered, sampling a large range of conformations. The large conformational variability of the apo state allows the free reduced cysteine Cys-6 to become highly solvent accessible in solution, whereas it is essentially buried in the metalated state and the crystal structures. Such solvent accessibility, together with that of Cys-111, accounts for the tendency to oligomerization of the metal-free state. The present results suggest that the investigation of the solution state coupled with that of the crystal state can provide major insights into SOD1 pathway toward oligomerization in relation to fALS.


Asunto(s)
Apoproteínas/química , Apoproteínas/metabolismo , Multimerización de Proteína , Superóxido Dismutasa/química , Superóxido Dismutasa/metabolismo , Apoproteínas/genética , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Mutación/genética , Resonancia Magnética Nuclear Biomolecular , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
19.
Eur J Med Chem ; 229: 114054, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34959172

RESUMEN

The human kinome plays a crucial role in several pathways. Its dysregulation has been linked to diverse central nervous system (CNS)-related disorders with a drastic impact on the aging population. Among them, tauopathies, such as Alzheimer's Disease (AD) and Frontotemporal Lobar degeneration (FTLD-tau), are neurodegenerative disorders pathologically defined by the presence of hyperphosphorylated tau-positive intracellular inclusions known as neurofibrillary tangles (NFTs). Compelling evidence has reported the great potential of the simultaneous modulation of multiple protein kinases (PKs) involved in abnormal tau phosphorylation through a concerted pharmacological approach to achieve a superior therapeutic effect relative to classic "one target, one drug" approaches. Here, we report on the identification and characterization of ARN25068 (4), a low nanomolar and well-balanced dual GSK-3ß and FYN inhibitor, which also shows inhibitory activity against DYRK1A, an emerging target in AD and tauopathies. Computational and X-Ray studies highlight compound 4's typical H-bonding pattern of ATP-competitive inhibitors at the binding sites of all three PKs. In a tau phosphorylation assay on Tau0N4R-TM-tGFP U2OS cell line, 4 reduces the extent of tau phosphorylation, promoting tau-stabilized microtubule bundles. In conclusion, this compound emerges as a promising prototype for further SAR explorations to develop potent and well-balanced triple GSK-3ß/FYN/DYRK1A inhibitors to tackle tau hyperphosphorylation.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/metabolismo , Fármacos Neuroprotectores/síntesis química , Inhibidores de Proteínas Quinasas/síntesis química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-fyn/antagonistas & inhibidores , Tauopatías/tratamiento farmacológico , Sitios de Unión , Evaluación Preclínica de Medicamentos , Humanos , Microtúbulos/metabolismo , Modelos Moleculares , Ovillos Neurofibrilares/metabolismo , Fármacos Neuroprotectores/farmacología , Fosforilación , Unión Proteica , Conformación Proteica , Inhibidores de Proteínas Quinasas/farmacología , Relación Estructura-Actividad , Proteínas tau/metabolismo , Quinasas DyrK
20.
ACS Med Chem Lett ; 13(8): 1262-1269, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35978685

RESUMEN

RAD51 is an ATP-dependent recombinase, recruited by BRCA2 to mediate DNA double-strand breaks repair through homologous recombination and represents an attractive cancer drug target. Herein, we applied for the first-time protein-templated dynamic combinatorial chemistry on RAD51 as a hit identification strategy. Upon design of N-acylhydrazone-based dynamic combinatorial libraries, RAD51 showed a clear templating effect, amplifying 19 N-acylhydrazones. Screening against the RAD51-BRCA2 protein-protein interaction via ELISA assay afforded 10 inhibitors in the micromolar range. Further 19F NMR experiments revealed that 7 could bind RAD51 and be displaced by BRC4, suggesting an interaction in the same binding pocket of BRCA2. These results proved not only that ptDCC could be successfully applied on full-length oligomeric RAD51, but also that it could address the need of alternative strategies toward the identification of small-molecule PPI inhibitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA