Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cryobiology ; 111: 57-69, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37062517

RESUMEN

The importance of cryopreservation in tissue engineering is unceasingly increasing. Preparation, cryopreservation, and storage of tissue-engineered constructs (TECs) at an on-site location offer a convenient way for their clinical application and commercialization. Partial freezing initiated at high sub-zero temperatures using ice-nucleating agents (INAs) has recently been applied in organ cryopreservation. It is anticipated that this freezing technique may be efficient for the preservation of both scaffold mechanical properties and cell viability of TECs. Infrared thermography is an instrumental method to monitor INAs-mediated freezing of various biological entities. In this paper, porous collagen-hydroxyapatite (collagen-HAP) scaffolds were fabricated and characterized as model TECs, whereas infrared thermography was proposed as a method for monitoring the crystallization-related events on their partial freezing down to -25 °C. Intra- and interscaffold latent heat transmission were descriptively evaluated. Nucleation, freezing points as well as the degree of supercooling and duration of crystallization were calculated based on inspection of respective thermographic curves. Special consideration was given to the cryoprotective agent (CPA) composition (Snomax®, crude leaf homogenate (CLH) from Hippophae rhamnoides, dimethyl sulfoxide (Me2SO) and recombinant type-III antifreeze protein (AFP)) and freezing conditions ('in air' or 'in bulk CPA'). For CPAs without ice nucleation activity, thermographic measurements demonstrated that the supercooling was significantly milder in the case of scaffolds present in a CPA solution compared to that without them. This parameter (ΔT, °C) altered with the following tendency: 10 Me2SO (2.90 ± 0.54 ('scaffold in a bulk CPA') vs. 7.71 ± 0.43 ('bulk CPA', P < 0.0001)) and recombinant type-III AFP, 0.5 mg/ml (2.65 ± 0.59 ('scaffold in a bulk CPA') vs. 7.68 ± 0.34 ('bulk CPA', P < 0.0001)). At the same time, in CPA solutions with ice nucleation activity the least degree of supercooling and the longest crystallization duration (Δt, min) for scaffolds frozen 'in air' were documented for CLH from Hippophae rhamnoides (1.57 ± 0.37 °C and 21.86 ± 2.93 min) compared to Snomax, 5 µg/ml (2.14 ± 0.33 °C and 19.91 ± 4.72 min), respectively). Moreover, when frozen 'in air' in CLH from Hippophae rhamnoides, collagen-HAP scaffolds were shown to have the longest ice-liquid equilibrium phase during crystallization and the lowest degree of supercooling followed by alginate core-shell capsules and nanofibrous electrospun fiber mats made of poly ɛ-caprolactone (PCL) and polylactic acid (PLA) (PCL/PLA) blend. The paper offers evidence that infrared thermography provides insightful information for monitoring partial freezing events in TECs when using different freezing containers, CPAs and conditions. This may further TEC-specific cryopreservation with enhanced batch homogeneity and optimization of CPA compositions of natural origin active at warm sub-zero temperatures.


Asunto(s)
Criopreservación , Hielo , Congelación , Criopreservación/métodos , Termografía , Durapatita , alfa-Fetoproteínas , Crioprotectores/química , Colágeno
2.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803546

RESUMEN

Alginate as a versatile naturally occurring biomaterial has found widespread use in the biomedical field due to its unique features such as biocompatibility and biodegradability. The ability of its semipermeable hydrogels to provide a favourable microenvironment for clinically relevant cells made alginate encapsulation a leading technology for immunoisolation, 3D culture, cryopreservation as well as cell and drug delivery. The aim of this work is the evaluation of structural properties and swelling behaviour of the core-shell capsules for the encapsulation of multipotent stromal cells (MSCs), their 3D culture and cryopreservation using slow freezing. The cells were encapsulated in core-shell capsules using coaxial electrospraying, cultured for 35 days and cryopreserved. Cell viability, metabolic activity and cell-cell interactions were analysed. Cryopreservation of MSCs-laden core-shell capsules was performed according to parameters pre-selected on cell-free capsules. The results suggest that core-shell capsules produced from the low viscosity high-G alginate are superior to high-M ones in terms of stability during in vitro culture, as well as to solid beads in terms of promoting formation of viable self-assembled cellular structures and maintenance of MSCs functionality on a long-term basis. The application of 0.3 M sucrose demonstrated a beneficial effect on the integrity of capsules and viability of formed 3D cell assemblies, as compared to 10% dimethyl sulfoxide (DMSO) alone. The proposed workflow from the preparation of core-shell capsules with self-assembled cellular structures to the cryopreservation appears to be a promising strategy for their off-the-shelf availability.


Asunto(s)
Alginatos/química , Hidrogeles/química , Andamios del Tejido/química , Animales , Callithrix , Cápsulas , Supervivencia Celular , Criopreservación , Dermis/citología , Humanos , Células Madre Mesenquimatosas/citología , Tamaño de la Partícula , Espectrometría Raman , Factores de Tiempo , Agua/química
3.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34768804

RESUMEN

Polyvinylidene fluoride (PVDF) and its copolymer with trifluoroethylene (P(VDF-TrFE)) are considered as promising biomaterials for supporting nerve regeneration because of their proven biocompatibility and piezoelectric properties that could stimulate cell ingrowth due to their electrical activity upon mechanical deformation. For the first time, this study reports on the comparative analysis of PVDF and P(VDF-TrFE) electrospun scaffolds in terms of structural and piezoelectric properties as well as their in vitro performance. A dynamic impact test machine was developed, validated, and utilised, to evaluate the generation of an electrical voltage upon the application of an impact load (varying load magnitude and frequency) onto the electrospun PVDF (15-20 wt%) and P(VDF-TrFE) (10-20 wt%) scaffolds. The cytotoxicity and in vitro performance of the scaffolds was evaluated with neonatal rat (nrSCs) and adult human Schwann cells (ahSCs). The neurite outgrowth behaviour from sensory rat dorsal root ganglion neurons cultured on the scaffolds was analysed qualitatively. The results showed (i) a significant increase of the ß-phase content in the PVDF after electrospinning as well as a zeta potential similar to P(VDF-TrFE), (ii) a non-constant behaviour of the longitudinal piezoelectric strain constant d33, depending on the load and the load frequency, and (iii) biocompatibility with cultured Schwann cells and guiding properties for sensory neurite outgrowth. In summary, the electrospun PVDF-based scaffolds, representing piezoelectric activity, can be considered as promising materials for the development of artificial nerve conduits for the peripheral nerve injury repair.


Asunto(s)
Polímeros de Fluorocarbono/química , Ganglios Espinales/fisiología , Hidrocarburos Fluorados/química , Regeneración Nerviosa , Polivinilos/química , Células de Schwann/fisiología , Andamios del Tejido , Adolescente , Adulto , Animales , Materiales Biocompatibles , Células Cultivadas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Polímeros , Ratas , Adulto Joven
4.
Cryobiology ; 92: 215-230, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31972153

RESUMEN

Through enabling an efficient supply of cells and tissues in the health sector on demand, cryopreservation is increasingly becoming one of the mainstream technologies in rapid translation and commercialization of regenerative medicine research. Cryopreservation of tissue-engineered constructs (TECs) is an emerging trend that requires the development of practically competitive biobanking technologies. In our previous studies, we demonstrated that conventional slow-freezing using dimethyl sulfoxide (Me2SO) does not provide sufficient protection of mesenchymal stromal cells (MSCs) frozen in 3D collagen-hydroxyapatite scaffolds. After simple modifications to a cryopreservation protocol, we report on significantly improved cryopreservation of TECs. Porous 3D scaffolds were fabricated using freeze-drying of a mineralized collagen suspension and following chemical crosslinking. Amnion-derived MSCs from common marmoset monkey Callithrix jacchus were seeded onto scaffolds in static conditions. Cell-seeded scaffolds were subjected to 24 h pre-treatment with 100 mM sucrose and slow freezing in 10% Me2SO/20% FBS alone or supplemented with 300 mM sucrose. Scaffolds were frozen 'in air' and thawed using a two-step procedure. Diverse analytical methods were used for the interpretation of cryopreservation outcome for both cell-seeded and cell-free scaffolds. In both groups, cells exhibited their typical shape and well-preserved cell-cell and cell-matrix contacts after thawing. Moreover, viability test 24 h post-thaw demonstrated that application of sucrose in the cryoprotective solution preserves a significantly greater portion of sucrose-pretreated cells (more than 80%) in comparison to Me2SO alone (60%). No differences in overall protein structure and porosity of frozen scaffolds were revealed whereas their compressive stress was lower than in the control group. In conclusion, this approach holds promise for the cryopreservation of 'ready-to-use' TECs.


Asunto(s)
Colágeno/farmacología , Criopreservación/métodos , Crioprotectores/farmacología , Durapatita/farmacología , Células Madre Mesenquimatosas/citología , Animales , Bancos de Muestras Biológicas , Callithrix , Supervivencia Celular/efectos de los fármacos , Dimetilsulfóxido/farmacología , Congelación , Sacarosa/farmacología , Ingeniería de Tejidos
5.
Int J Mol Sci ; 21(11)2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32512889

RESUMEN

For decades, the unique regenerative properties of the human amniotic membrane (hAM) have been successfully utilized in ophthalmology. As a directly applied biomaterial, the hAM should be available in a ready to use manner in clinical settings. However, an extended period of time is obligatory for performing quality and safety tests. Hence, the low temperature storage of the hAM is a virtually inevitable step in the chain from donor retrieval to patient application. At the same time, the impact of subzero temperatures carries an increased risk of irreversible alterations of the structure and composition of biological objects. In the present study, we performed a comprehensive analysis of the hAM as a medicinal product; this is intended for a novel strategy of application in ophthalmology requiring a GMP production protocol including double freezing-thawing cycles. We compared clinically relevant parameters, such as levels of growth factors and extracellular matrix proteins content, morphology, ultrastructure and mechanical properties, before and after one and two freezing cycles. It was found that epidermal growth factor (EGF), transforming growth factor beta 1 (TGF-ß1), hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF), hyaluronic acid, and laminin could be detected in all studied conditions without significant differences. Additionally, histological and ultrastructure analysis, as well as transparency and mechanical tests, demonstrated that properties of the hAM required to support therapeutic efficacy in ophthalmology are not impaired by dual freezing.


Asunto(s)
Amnios/química , Amnios/fisiología , Congelación , Oftalmología , Amnios/ultraestructura , Microscopía por Crioelectrón , Criopreservación , Humanos , Fenómenos Mecánicos , Oftalmología/métodos
6.
Histochem Cell Biol ; 151(4): 343-356, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30560287

RESUMEN

Histological processing of thermosensitive electrospun poly(ε-caprolactone)/poly(L-lactide) (PCL/PLA) scaffolds fails, as poly(ε-caprolactone) (PCL) is characterized by its low-melting temperature (Tm = 60 °C). Here, we present an optimized low-temperature preparation method for the histological processing of un-/cellularized thermosensitive PCL/PLA scaffolds.Our study is aimed at the establishment of an optimized dehydration and low-melting-point paraffin-embedding method of electrospun PCL/PLA scaffolds (un-/cellularized). Furthermore, we compared this method with (a) automatized dehydration and standard paraffin embedding, (b) gelatin embedding followed by automatized dehydration and standard paraffin embedding, (c) cryofixation, and (d) acrylic resin embedding methods. We investigated pepsin and proteinase K antigen retrieval for their efficiency in epitope demasking at low temperatures and evaluated protocols for immunohistochemistry and immunofluorescence for cytokeratin 7 (CK7) and in situ padlock probe technology for beta actin (ACTB). Optimized dehydration and low-melting-point paraffin embedding preserved the PCL/PLA scaffold, as the diameter and structure of its fibers were unchanged. Cells attached to the PCL/PLA scaffolds showed limited alterations in size and morphology compared to control. Epitope demasking by enzymatic pepsin digestion and immunostaining of CK7 displayed an invasion of attached cells into the scaffold. Expression of ACTB and CK7 was shown by a combination of mRNA-based in situ padlock probe technology and immunofluorescence. In contrast, gelatin stabilization followed by standard paraffin embedding led to an overall shrinkage and melting of fibers, and therefore, no further analysis was possible. Acrylic resin embedding and cyrofixation caused fiber structures that were nearly unchanged in size and diameter. However, acrylic resin-embedded scaffolds are limited to 3 µm sections, whereas cyrofixation led to a reduction of the cell size by 14% compared to low-melting paraffin embedding. The combination of low-melting-point paraffin embedding and pepsin digestion as an antigen retrieval method offers a successful opportunity for histological investigations in thermosensitive specimens.


Asunto(s)
Adhesión en Parafina , Poliésteres/química , Temperatura de Transición , Células Cultivadas , Gelatina/análisis , Humanos , Queratina-7/análisis
7.
Cryobiology ; 91: 104-114, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31593692

RESUMEN

Cryopreservation is the universal technology used to enable long-term storage and continuous availability of cell stocks and tissues for regenerative medicine demands. The main components of standard freezing media are dimethyl sulfoxide (hereinafter Me2SO) and fetal bovine serum (FBS). However, for manufacturing of cells and tissue-engineered products in accordance with the principles of Good Manufacturing Practice (GMP), current considerations in regenerative medicine suggest development of Me2SO- and serum-free biopreservation strategies due to safety concerns over Me2SO-induced side effects and immunogenicity of animal serum. In this work, the effect of electroporation-assisted pre-freeze delivery of sucrose, trehalose and raffinose into human umbilical cord mesenchymal stem cells (hUCMSCs) on their post-thaw survival was investigated. The optimal strength of electric field at 8 pulses with 100 µs duration and 1 Hz pulse repetition frequency was determined to be 1.5 kV/cm from permeabilization (propidium iodide uptake) vs. cell recovery data (resazurin reduction assay). Using sugars as sole cryoprotectants with electroporation, concentration-dependent increase in cell survival was observed. Irrespective of sugar type, the highest cell survival (up to 80%) was achieved at 400 mM extracellular concentration and electroporation. Cell freezing without electroporation yielded significantly lower survival rates. In the optimal scenario, cells were able to attach 24 h after thawing demonstrating characteristic shape and sugar-loaded vacuoles. Application of 10% Me2SO/90% FBS as a positive control provided cell survival exceeding 90%. Next, high glass transition temperatures determined for optimal concentrations of sugars by differential scanning calorimetry (DSC) suggest the possibility to store samples at -80 °C. In summary, using electroporation to incorporate cryoprotective sugars into cells is an effective strategy towards Me2SO- and serum-free cryopreservation and may pave the way for further progress in establishing clinically safe biopreservation strategies for efficient long-term biobanking of cells.


Asunto(s)
Criopreservación/métodos , Crioprotectores/metabolismo , Crioprotectores/farmacología , Dimetilsulfóxido/farmacología , Electroporación/métodos , Células Madre Mesenquimatosas/citología , Animales , Bancos de Muestras Biológicas , Supervivencia Celular/efectos de los fármacos , Congelación , Humanos , Rafinosa/metabolismo , Rafinosa/farmacología , Sacarosa/metabolismo , Sacarosa/farmacología , Ingeniería de Tejidos , Trehalosa/metabolismo , Trehalosa/farmacología , Cordón Umbilical/citología
8.
J Mater Sci Mater Med ; 30(4): 42, 2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30919082

RESUMEN

Biodegradable polymers such as polycaprolactone (PCL) are increasingly used for electrospinning substrates for tissue engineering. These materials offer great advantages such as biocompatibility and good mechanical properties. However, in order to be approved for human implantation they have to be sterilized. The impact of commonly used irradiation sterilization methods on electrospun PCL fiber mats was investigated systematically. Electron beam (ß-irradiation), gamma and X-ray irradiation with two different doses (25 and 33 kGy) were investigated. To determine the impact on the fiber mats, mechanical, chemical, thermal properties and crystallinity were investigated. Irradiation resulted in a significant decrease in molecular weight. At the same time, crystallinity of fiber mats increased significantly. However, the mechanical properties did not change significantly upon irradiation, mostly likely because effects of a lower molecular weight were balanced with the higher degree of crystallinity. The irradiation effects were dose dependent, a higher irradiation dose led to stronger changes. Gamma irradiation seemed to be the least suited method, while electron beams (ß irradiation) had a lower impact. Therefore, ß irradiation is recommended as sterilization method for electrospun PCL fiber mats.


Asunto(s)
Desinfección/métodos , Membranas Artificiales , Nanofibras/química , Nanofibras/efectos de la radiación , Poliésteres/química , Andamios del Tejido , Electrones , Galvanoplastia/métodos , Rayos gamma , Humanos , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Poliésteres/efectos de la radiación , Polímeros/química , Polímeros/efectos de la radiación , Esterilización/métodos , Estrés Mecánico , Propiedades de Superficie , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Rayos X
9.
Cryobiology ; 71(1): 103-11, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25980899

RESUMEN

Multipotent stromal cells derived from the common marmoset monkey Callithrix jacchus (cjMSCs) possess high phylogenetic similarity to humans, with a great potential for preclinical studies in the field of regenerative medicine. Safe and effective long-term storage of cells is of great significance to clinical and research applications. Encapsulation of such cell types within alginate beads that can mimic an extra-cellular matrix and provide a supportive environment for cells during cryopreservation, has several advantages over freezing of cells in suspension. In this study we have analysed the effect of dimethyl sulfoxide (Me2SO, 2.5-10%, v/v) and pre-freeze loading time of alginate encapsulated cjMSCs in Me2SO (0-45 min) on the viability and metabolic activity of the cells after freezing using a slow cooling rate (-1°C/min). It was found that these parameters affect the stability and homogeneity of alginate beads after thawing. Moreover, the cjMSCs can be frozen in alginate beads with lower Me2SO concentration of 7.5% after 30 min of loading, while retaining high cryopreservation outcome. We demonstrated the maximum viability, membrane integrity and metabolic activity of the cells under optimized, less cytotoxic conditions. The results of this study are another step forward towards the application of cryopreservation for the long-term storage and subsequent applications of transplants in cell-based therapies.


Asunto(s)
Criopreservación/métodos , Células Madre Mesenquimatosas/fisiología , Células Madre Multipotentes/fisiología , Alginatos/farmacología , Animales , Callithrix/fisiología , Supervivencia Celular/efectos de los fármacos , Dimetilsulfóxido/farmacología , Congelación , Ácido Glucurónico/farmacología , Ácidos Hexurónicos/farmacología , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Multipotentes/citología , Células Madre Multipotentes/efectos de los fármacos , Filogenia
10.
Front Bioeng Biotechnol ; 12: 1321466, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38361789

RESUMEN

Context: The development of porous devices using materials modified with various natural agents has become a priority for bone healing processes in the oral and maxillofacial field. There must be a balance between the proliferation of eukaryotic and the inhibition of prokaryotic cells to achieve proper bone health. Infections might inhibit the formation of new alveolar bone during bone graft augmentation. Objective: This study aimed to evaluate the in vitro osteogenic behavior of human bone marrow stem cells and assess the antimicrobial response to 3D-printed porous scaffolds using propolis-modified wollastonite. Methodology: A fractional factorial design of experiments was used to obtain a 3D printing paste for developing scaffolds with a triply periodic minimal surface (TPMS) gyroid geometry based on wollastonite and modified with an ethanolic propolis extract. The antioxidant activity of the extracts was characterized using free radical scavenging methods (DPPH and ABTS). Cell proliferation and osteogenic potential using Human Bone Marrow Stem Cells (bmMSCs) were assessed at different culture time points up to 28 days. MIC and inhibition zones were studied from single strain cultures, and biofilm formation was evaluated on the scaffolds under co-culture conditions. The mechanical strength of the scaffolds was evaluated. Results: Through statistical design of experiments, a paste suitable for printing scaffolds with the desired geometry was obtained. Propolis extracts modifying the TPMS gyroid scaffolds showed favorable cell proliferation and metabolic activity with osteogenic potential after 21 days. Additionally, propolis exhibited antioxidant activity, which may be related to the antimicrobial effectiveness of the scaffolds against S. aureus and S. epidermidis cultures. The mechanical properties of the scaffolds were not affected by propolis impregnation. Conclusion: These results demonstrate that propolis-impregnated porous wollastonite scaffolds might have the potential to stimulate bone repair in maxillofacial tissue engineering applications.

11.
Heliyon ; 10(1): e23955, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38205336

RESUMEN

Biocompatible ceramic scaffolds offer a promising approach to address the challenges in bone reconstruction. Wollastonite, well-known for its exceptional biocompatibility, has attracted significant attention in orthopedics and craniofacial fields. However, the antimicrobial properties of wollastonite have contradictory findings, necessitating further research to enhance its antibacterial characteristics. This study aimed to explore a new approach to improve in vitro biological response in terms of antimicrobial activity and cell proliferation by taking advantage of additive manufacturing for the development of scaffolds with complex geometries by 3D printing using propolis-modified wollastonite. The scaffolds were designed with a TPMS (Triply Periodic Minimal Surface) gyroid geometric shape and 3D printed prior to impregnation with propolis extract. The paste formulation was characterized by rheometric measurements, and the presence of propolis was confirmed by FTIR spectroscopy. The scaffolds were comprehensively assessed for their mechanical strength. The biological characterization involved evaluating the antimicrobial effects against Staphylococcus aureus and Staphylococcus epidermidis, employing Minimum Inhibitory Concentration (MIC), Zone of Inhibition (ZOI), and biofilm formation assays. Additionally, SaOs-2 cultures were used to study cell proliferation (Alamar blue assay), and potential osteogenic was tested (von Kossa, Alizarin Red, and ALP stainings) at different time points. Propolis impregnation did not compromise the mechanical properties of the scaffolds, which exhibited values comparable to human trabecular bone. Propolis incorporation conferred antibacterial activity against both Staphylococcus aureus and Staphylococcus epidermidis. The implementation of TPMS gyroid geometry in the scaffold design demonstrated favorable cell proliferation with increased metabolic activity and osteogenic potential after 21 days of cell cultures.

13.
Biomedicines ; 11(3)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36979830

RESUMEN

Calcium phosphate cements (CPCs) offer a promising solution for treating bone defects due to their osteoconductive, injectable, biocompatible, and bone replacement properties. However, their brittle nature restricts their utilization to non-load-bearing applications. In this study, the impact of hybrid silk fibroin (SF) and kappa-carrageenan (k-CG) nanofibers as reinforcements in CPC was investigated. The CPC composite was fabricated by incorporating electrospun nanofibers in 1, 3, and 5% volume fractions. The morphology, mineralization, mechanical properties, setting time, injectability, cell adhesion, and mineralization of the CPC composites were analyzed. The results demonstrated that the addition of the nanofibers improved the CPC mixture, leading to an increase in compressive strength (14.8 ± 0.3 MPa compared to 8.1 ± 0.4 MPa of the unreinforced CPC). Similar improvements were seen in the bending strength and work fracture (WOF). The MC3T3-E1 cell culture experiments indicated that cells attached well to the surfaces of all cement samples and tended to join their adjacent cells. Additionally, the CPC composites showed higher cell mineralization after a culture period of 14 days, indicating that the SF/k-CG combination has potential for applications as a CPC reinforcement and bone cell regeneration promoter.

14.
Pharmaceuticals (Basel) ; 16(5)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37242527

RESUMEN

(1) Background: Implant-associated bacterial infections are usually hard to treat conservatively due to the resistance and tolerance of the pathogens to conventional antimicrobial therapy. Bacterial colonization of vascular grafts may lead to life-threatening conditions such as sepsis. The objective of this study is to evaluate whether conventional antibiotics and bacteriophages can reliably prevent the bacterial colonization of vascular grafts. (2) Methods: Gram-positive and Gram-negative bacterial infections were simulated on samples of woven PET gelatin-impregnated grafts using Staphylococcus aureus and Escherichia coli strains, respectively. The ability to prevent colonization was evaluated for a mixture of broad-spectrum antibiotics, for strictly lytic species-specific bacteriophage strains, and for a combination of both. All the antimicrobial agents were conventionally tested in order to prove the sensitivity of the used bacterial strains. Furthermore, the substances were used in a liquid form or in combination with a fibrin glue. (3) Results: Despite their strictly lytic nature, the application of bacteriophages alone was not enough to protect the graft samples from both bacteria. The singular application of antibiotics, both with and without fibrin glue, showed a protective effect against S. aureus (0 CFU/cm2), but was not sufficient against E. coli without fibrin glue (M = 7.18 × 104 CFU/cm2). In contrast, the application of a combination of antibiotics and phages showed complete eradication of both bacteria after a single inoculation. The fibrin glue hydrogel provided an increased protection against repetitive exposure to S. aureus (p = 0.05). (4) Conclusions: The application of antibacterial combinations of antibiotics and bacteriophages is an effective approach to the prevention of bacteria-induced vascular graft infections in clinical settings.

15.
Front Bioeng Biotechnol ; 11: 957458, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36741762

RESUMEN

Introduction: Synthetic vascular grafts perform poorly in small-caliber (<6mm) anastomoses, due to intimal hyperplasia and thrombosis, whereas homografts are associated with limited availability and immunogenicity, and bioprostheses are prone to aneurysmal degeneration and calcification. Infection is another important limitation with vascular grafting. This study developed a dual-component graft for small-caliber reconstructions, comprising a decellularized tibial artery scaffold and an antibiotic-releasing, electrospun polycaprolactone (PCL)/polyethylene glycol (PEG) blend sleeve. Methods: The study investigated the effect of nucleases, as part of the decellularization technique, and two sterilization methods (peracetic acid and γ-irradiation), on the scaffold's biological and biomechanical integrity. It also investigated the effect of different PCL/PEG ratios on the antimicrobial, biological and biomechanical properties of the sleeves. Tibial arteries were decellularized using Triton X-100 and sodium-dodecyl-sulfate. Results: The scaffolds retained the general native histoarchitecture and biomechanics but were depleted of glycosaminoglycans. Sterilization with peracetic acid depleted collagen IV and produced ultrastructural changes in the collagen and elastic fibers. The two PCL/PEG ratios used (150:50 and 100:50) demonstrated differences in the structural, biomechanical and antimicrobial properties of the sleeves. Differences in the antimicrobial activity were also found between sleeves fabricated with antibiotics supplemented in the electrospinning solution, and sleeves soaked in antibiotics. Discussion: The study demonstrated the feasibility of fabricating a dual-component small-caliber graft, comprising a scaffold with sufficient biological and biomechanical functionality, and an electrospun PCL/PEG sleeve with tailored biomechanics and antibiotic release.

16.
Biochim Biophys Acta ; 1808(1): 474-81, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20883663

RESUMEN

Unilamellar liposomes composed of natural phospholipids provide a new promising class of protective agents for hypothermic storage, cryopreservation, or freeze-drying of red blood cells (RBCs). In this study, FTIR spectroscopy, MALDI-TOF MS, and colorimetric assays were used to investigate the effects of liposomes composed of a homologous series of linear saturated phosphatidylcholine phospholipids (18:0; 16:0; 14:0; 12:0) on RBC membranes. RBCs were incubated with liposomes at 37°C and both the liposomal and the RBC fraction were analyzed after incubation. FTIR studies showed that liposomes composed of short acyl chain length lipids cause an increase in RBC membrane conformational disorder at suprazero temperatures, whereas long acyl chain length lipids were found to have little effects. The increased lipid conformational disorder in the RBC membranes coincided with a decrease in the cholesterol-to-phospholipid ratio. The opposite effects were found in the liposomes after incubation with RBCs. MALDI-TOF MS analysis showed the presence of short acyl chain length lipids (14:0 and 12:0) in RBC membranes after incubation, which was not observed after incubation with liposomes containing long acyl chain length lipids (18:0 and 16:0). Liposomes alter RBC membrane properties by cholesterol depletion and lipid addition.


Asunto(s)
Colorimetría/métodos , Membrana Eritrocítica/metabolismo , Liposomas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Biofisica/métodos , Colesterol/química , Dimiristoilfosfatidilcolina/química , Humanos , Lípidos/química , Fosfatidilcolinas/química , Espectrofotometría Infrarroja/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Temperatura , beta-Ciclodextrinas/química
17.
Cryobiology ; 64(3): 250-60, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22342926

RESUMEN

Cellular response during the freeze-thaw process strongly affects the cryopreservation outcome including cell morphology and cell viability. Cryomicroscopy was used to individually analyze the osmotic response of human pulmonary microvascular endothelial cells (HPMECs) during slow cooling (1 °C/min) to -60 °C and fast rewarming to 4 °C (100 °C/min). The ice nucleation temperature was controlled (T(n)=-8 °C). Different concentrations of different cryoprotectant agents, dimethyl sulfoxide, ethylene glycol, proline, ectoin, and trehalose resulted in various cell volume changes. The described methods for image processing and computer vision allows for a fully automatic and individual analysis of the osmotically driven cell response under a temporal resolution of 2 frames per second. As a result, we show that in the presence of dimethyl sulfoxide or ethylene glycol cells shrink during cooling to a high degree, especially at intermediate molar concentrations in the range between 0 and 2M, while during rewarming cells swell to isotonic volumes gradually. Comparative cell vitality tests, membrane integrity, and viability tests after 24h recultivation, under these conditions show a high cell survival. In the absence of cryoprotective agents or with proline, ectoin or trehalose, osmotic shrinkage did not meet our expectations: a freeze-induced swelling was detected during cooling and an extreme swelling was observed after rewarming, which was accompanied by lower comparative cell viability. A linear correlation between the cellular membrane integrity after cryopreservation and the maximal relative cell volume was derived (R(2)=96). The results clearly show that it is crucial to analyze cells within a sample individually due to their individual different osmotic response.


Asunto(s)
Membrana Celular/fisiología , Criopreservación , Crioprotectores/farmacología , Células Endoteliales/fisiología , Aminoácidos Diaminos/farmacología , Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular , Tamaño de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dimetilsulfóxido/farmacología , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Glicol de Etileno/farmacología , Congelación , Humanos , Hielo , Procesamiento de Imagen Asistido por Computador , Microscopía , Ósmosis , Presión Osmótica , Prolina/farmacología , Trehalosa/farmacología , Grabación en Video
18.
Cryo Letters ; 33(6): 485-93, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23250408

RESUMEN

Dimethyl sulfoxide (DMSO) is till now a widely used cryoprotective agent for cryopreservation of cells. Since high concentrations of DMSO have detrimental effects on cell functioning the aim of this study is to reduce the DMSO concentration by using compatible solutes (CS). These are small organic osmolytes that microorganisms synthesize and accumulate to counteract stress factors. Three CS, hydroxyectoine, ectoine and L-proline were investigated as cryoprotective agents for the cryopreservation of the human endothelial cell line HPMEC-ST1.6R. They were either supplemented to freezing or to cell culture medium. L-proline was the most effective CS, the efficiency of recultivation was improved by more than 100 percent. A combination of L-proline and ectoine in the cell culture medium resulted in an improvement by 63 percent. Our results show that L-proline and ectoine could be used as additional CPAs to improve the cryopreservation of human endothelial cells in the presence of low DMSO concentration.


Asunto(s)
Aminoácidos Diaminos/metabolismo , Crioprotectores/metabolismo , Dimetilsulfóxido/metabolismo , Células Endoteliales/citología , Prolina/metabolismo , Línea Celular , Supervivencia Celular , Criopreservación/métodos , Células Endoteliales/metabolismo , Humanos
19.
Gels ; 8(8)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36005103

RESUMEN

Particle image velocimetry (PIV) is an optical and contactless measurement method for analyzing fluid blood dynamics in cardiovascular research. The main challenge to visualization investigated in the current research was matching the channel material's index of refraction (IOR) to that of the fluid. Silicone is typically used as a channel material for these applications, so optical matching cannot be proven. This review considers hydrogel as a new PIV channel material for IOR matching. The advantages of hydrogels are their optical and mechanical properties. Hydrogels swell more than 90 vol% when hydrated in an aqueous solution and have an elastic behavior. This paper aimed to review single, double, and triple networks and nanocomposite hydrogels with suitable optical and mechanical properties to be used as PIV channel material, with a focus on cardiovascular applications. The properties are summarized in seven hydrogel groups: PAMPS, PAA, PVA, PAAm, PEG and PEO, PSA, and PNIPA. The reliability of the optical properties is related to low IORs, which allow higher light transmission. On the other hand, elastic modulus, tensile/compressive stress, and nominal tensile/compressive strain are higher for multiple-cross-linked and nanocomposite hydrogels than single mono-cross-linked gels. This review describes methods for measuring optical and mechanical properties, e.g., refractometry and mechanical testing.

20.
Biochem Biophys Res Commun ; 411(2): 317-22, 2011 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-21726528

RESUMEN

In regenerative medicine, human cell replacement therapy offers great potential, especially by cell types differentiated from immunologically and ethically unproblematic mesenchymal stem cells (MSCs). In terms of an appropriate carrier material, collagen scaffolds with homogeneous pore size of 65µm were optimal for cell seeding and cultivating. However, before clinical application and transplantation of MSC-derived cells in scaffolds, the safety and efficiency, but also possible interference in differentiation due to the material must be preclinically tested. The common marmoset monkey (Callithrix jacchus) is a preferable non-human primate animal model for this aim due to its genetic and physiological similarities to the human. Marmoset bone marrow-derived MSCs were successfully isolated, cultured and differentiated in suspension into adipogenic, osteogenic and chondrogenic lineages by defined factors. The differentiation capability could be determined by FACS. Specific marker genes for all three cell types could be detected by RT-PCR. Furthermore, MSCs seeded on collagen I scaffolds differentiated in adipogenic lineage showed after 28days of differentiation high cell viability and homogenous distribution on the material which was validated by calcein AM and EthD staining. As proof of adipogenic cells, the intracellular lipid vesicles in the cells were stained with Oil Red O. The generation of fat vacuoles was visibly extensive distinguishable and furthermore determined on the molecular level by expression of specific marker genes. The results of the study proved both the differential potential of marmoset MSCs in adipogenic, osteogenic and chondrogenic lineages and the suitability of collagen scaffolds as carrier material undisturbing differentiation of primate mesenchymal stem cells.


Asunto(s)
Adipocitos/citología , Adipogénesis , Colágeno Tipo I , Células Madre Mesenquimatosas/fisiología , Ingeniería de Tejidos/métodos , Andamios del Tejido , Adipocitos/metabolismo , Animales , Callithrix , Separación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA