Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 166(4): 935-949, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27477512

RESUMEN

Clearance of misfolded and aggregated proteins is central to cell survival. Here, we describe a new pathway for maintaining protein homeostasis mediated by the proteasome shuttle factor UBQLN2. The 26S proteasome degrades polyubiquitylated substrates by recognizing them through stoichiometrically bound ubiquitin receptors, but substrates are also delivered by reversibly bound shuttles. We aimed to determine why these parallel delivery mechanisms exist and found that UBQLN2 acts with the HSP70-HSP110 disaggregase machinery to clear protein aggregates via the 26S proteasome. UBQLN2 recognizes client-bound HSP70 and links it to the proteasome to allow for the degradation of aggregated and misfolded proteins. We further show that this process is active in the cell nucleus, where another system for aggregate clearance, autophagy, does not act. Finally, we found that mutations in UBQLN2, which lead to neurodegeneration in humans, are defective in chaperone binding, impair aggregate clearance, and cause cognitive deficits in mice.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Autofagia , Enfermedades Neurodegenerativas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Relacionadas con la Autofagia , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Proteínas HSP70 de Choque Térmico/metabolismo , Proteína Huntingtina/metabolismo , Masculino , Ratones , Enfermedades Neurodegenerativas/patología , Agregado de Proteínas , Pliegue de Proteína , Proteolisis
2.
Mol Cell ; 83(11): 1921-1935.e7, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37201526

RESUMEN

Although most eukaryotic proteins are targeted for proteasomal degradation by ubiquitination, a subset have been demonstrated to undergo ubiquitin-independent proteasomal degradation (UbInPD). However, little is known about the molecular mechanisms driving UbInPD and the degrons involved. Utilizing the GPS-peptidome approach, a systematic method for degron discovery, we found thousands of sequences that promote UbInPD; thus, UbInPD is more prevalent than currently appreciated. Furthermore, mutagenesis experiments revealed specific C-terminal degrons required for UbInPD. Stability profiling of a genome-wide collection of human open reading frames identified 69 full-length proteins subject to UbInPD. These included REC8 and CDCA4, proteins which control proliferation and survival, as well as mislocalized secretory proteins, suggesting that UbInPD performs both regulatory and protein quality control functions. In the context of full-length proteins, C termini also play a role in promoting UbInPD. Finally, we found that Ubiquilin family proteins mediate the proteasomal targeting of a subset of UbInPD substrates.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Ubiquitina , Humanos , Ubiquitina/genética , Ubiquitina/metabolismo , Proteolisis , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas/metabolismo , Ubiquitinación , Proteínas de Ciclo Celular/metabolismo
3.
Mol Cell ; 73(6): 1150-1161.e6, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30792173

RESUMEN

The 26S proteasome is the ATP-dependent protease responsible for regulating the proteome of eukaryotic cells through degradation of mainly ubiquitin-tagged substrates. In order to understand how proteasome responds to ubiquitin signal, we resolved an ensemble of cryo-EM structures of proteasome in the presence of K48-Ub4, with three of them resolved at near-atomic resolution. We identified a conformation with stabilized ubiquitin receptors and a previously unreported orientation of the lid, assigned as a Ub-accepted state C1-b. We determined another structure C3-b with localized K48-Ub4 to the toroid region of Rpn1, assigned as a substrate-processing state. Our structures indicate that tetraUb induced conformational changes in proteasome could initiate substrate degradation. We also propose a CP gate-opening mechanism involving the propagation of the motion of the lid to the gate through the Rpn6-α2 interaction. Our results enabled us to put forward a model of a functional cycle for proteasomes induced by tetraUb and nucleotide.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Ubiquitina/metabolismo , Regulación Alostérica , Animales , Sitios de Unión , Microscopía por Crioelectrón , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo , Humanos , Modelos Moleculares , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/ultraestructura , Unión Proteica , Conformación Proteica , Proteolisis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura , Relación Estructura-Actividad , Ubiquitina/ultraestructura , Ubiquitinación
4.
Semin Cell Dev Biol ; 132: 16-26, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35764457

RESUMEN

Ubiquitin-like proteins (Ubls) share some features with ubiquitin (Ub) such as their globular 3D structure and the ability to attach covalently to other proteins. Interferon Stimulated Gene 15 (ISG15) is an abundant Ubl that similar to Ub, marks many hundreds of cellular proteins, altering their fate. In contrast to Ub, , ISG15 requires interferon (IFN) induction to conjugate efficiently to other proteins. Moreover, despite the multitude of E3 ligases for Ub-modified targets, a single E3 ligase termed HERC5 (in humans) is responsible for the bulk of ISG15 conjugation. Targets include both viral and cellular proteins spanning an array of cellular compartments and metabolic pathways. So far, no common structural or biochemical feature has been attributed to these diverse substrates, raising questions about how and why they are selected. Conjugation of ISG15 mitigates some viral and bacterial infections and is linked to a lower viral load pointing to the role of ISG15 in the cellular immune response. In an apparent attempt to evade the immune response, some viruses try to interfere with the ISG15 pathway. For example, deconjugation of ISG15 appears to be an approach taken by coronaviruses to interfere with ISG15 conjugates. Specifically, coronaviruses such as SARS-CoV, MERS-CoV, and SARS-CoV-2, encode papain-like proteases (PL1pro) that bear striking structural and catalytic similarities to the catalytic core domain of eukaryotic deubiquitinating enzymes of the Ubiquitin-Specific Protease (USP) sub-family. The cleavage specificity of these PLpro enzymes is for flexible polypeptides containing a consensus sequence (R/K)LXGG, enabling them to function on two seemingly unrelated categories of substrates: (i) the viral polyprotein 1 (PP1a, PP1ab) and (ii) Ub- or ISG15-conjugates. As a result, PLpro enzymes process the viral polyprotein 1 into an array of functional proteins for viral replication (termed non-structural proteins; NSPs), and it can remove Ub or ISG15 units from conjugates. However, by de-conjugating ISG15, the virus also creates free ISG15, which in turn may affect the immune response in two opposite pathways: free ISG15 negatively regulates IFN signaling in humans by binding non-catalytically to USP18, yet at the same time free ISG15 can be secreted from the cell and induce the IFN pathway of the neighboring cells. A deeper understanding of this protein-modification pathway and the mechanisms of the enzymes that counteract it will bring about effective clinical strategies related to viral and bacterial infections.


Asunto(s)
COVID-19 , Interferones , Humanos , Péptido Hidrolasas/metabolismo , SARS-CoV-2 , Ubiquitina/metabolismo , Antivirales , Poliproteínas , Inmunidad , Citocinas/metabolismo , Ubiquitinas/genética , Ubiquitina Tiolesterasa
5.
Molecules ; 27(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35956818

RESUMEN

Deciphering the protein posttranslational modification (PTM) code is one of the greatest biochemical challenges of our time. Phosphorylation and ubiquitylation are key PTMs that dictate protein function, recognition, sub-cellular localization, stability, turnover and fate. Hence, failures in their regulation leads to various disease. Chemical protein synthesis allows preparation of ubiquitinated and phosphorylated proteins to study their biochemical properties in great detail. However, monitoring these modifications in intact cells or in cell extracts mostly depends on antibodies, which often have off-target binding. Here, we report that the most widely used antibody for ubiquitin (Ub) phosphorylated at serine 65 (pUb) has significant off-targets that appear during mitosis. These off-targets are connected to polo-like kinase 1 (PLK1) mediated phosphorylation of cell cycle-related proteins and the anaphase promoting complex subunit 1 (APC1).


Asunto(s)
Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase , Proteínas de Ciclo Celular , Mitosis , Procesamiento Proteico-Postraduccional , Ubiquitina , Anticuerpos/genética , Anticuerpos/metabolismo , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/genética , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Humanos , Mitosis/genética , Mitosis/fisiología , Fosforilación , Unión Proteica/genética , Unión Proteica/fisiología , Procesamiento Proteico-Postraduccional/genética , Procesamiento Proteico-Postraduccional/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Serina/genética , Serina/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinación , Quinasa Tipo Polo 1
6.
Biochem Soc Trans ; 49(2): 629-644, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33729481

RESUMEN

Ubiquitination is the major criteria for the recognition of a substrate-protein by the 26S proteasome. Additionally, a disordered segment on the substrate - either intrinsic or induced - is critical for proteasome engagement. The proteasome is geared to interact with both of these substrate features and prepare it for degradation. To facilitate substrate accessibility, resting proteasomes are characterised by a peripheral distribution of ubiquitin receptors on the 19S regulatory particle (RP) and a wide-open lateral surface on the ATPase ring. In this substrate accepting state, the internal channel through the ATPase ring is discontinuous, thereby obstructing translocation of potential substrates. The binding of the conjugated ubiquitin to the ubiquitin receptors leads to contraction of the 19S RP. Next, the ATPases engage the substrate at a disordered segment, energetically unravel the polypeptide and translocate it towards the 20S catalytic core (CP). In this substrate engaged state, Rpn11 is repositioned at the pore of the ATPase channel to remove remaining ubiquitin modifications and accelerate translocation. C-termini of five of the six ATPases insert into corresponding lysine-pockets on the 20S α-ring to complete 20S CP gate opening. In the resulting substrate processing state, the ATPase channel is fully contiguous with the translocation channel into the 20S CP, where the substrate is proteolyzed. Complete degradation of a typical ubiquitin-conjugate takes place over a few tens of seconds while hydrolysing tens of ATP molecules in the process (50 kDa/∼50 s/∼80ATP). This article reviews recent insight into biochemical and structural features that underlie substrate recognition and processing by the 26S proteasome.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/química , Conformación Proteica , Ubiquitina/química , Ubiquitinación , Animales , Humanos , Cinética , Modelos Moleculares , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Especificidad por Sustrato , Ubiquitina/metabolismo
7.
Mol Cell ; 50(4): 528-39, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23665229

RESUMEN

Ubiquitin-binding domains (UBDs) differentially recognize ubiquitin (ub) modifications. Some of them specifically bind mono-ub, as has been shown for the CUE domain. Interestingly, so far no significant ubiquitin binding has been observed for the CUE domain of yeast Cue1p. Cue1p is receptor and activator of the ubiquitin-conjugating enzyme Ubc7p. It integrates Ubc7p into endoplasmic reticulum (ER) membrane-bound ubiquitin ligase complexes, and thus, it is crucial for ER-associated protein degradation (ERAD). Here we show that the CUE domain of Cue1p binds ubiquitin chains, which is pivotal for the efficient formation of K48-linked polyubiquitin chains in vitro. Mutations that abolish ubiquitin binding by Cue1p affect the turnover of ERAD substrates in vivo. Our data strongly imply that the CUE domain facilitates substrate ubiquitylation by stabilizing growing ubiquitin chains at the ERAD ubiquitin ligases. Hence, we demonstrate an unexpected function of a UBD in the regulation of ubiquitin chain synthesis.


Asunto(s)
Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Electroforesis en Gel de Poliacrilamida , Lisina/genética , Lisina/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Mutación , Poliubiquitina/metabolismo , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Ubiquitina/genética , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
8.
J Am Chem Soc ; 142(46): 19558-19569, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33136379

RESUMEN

The maleimide group is a widely used reagent for bioconjugation of peptides, proteins, and oligonucleotides employing Michael addition and Diels-Alder cycloaddition reactions. However, the utility of this functionality in chemical synthesis of peptides and proteins remains unexplored. We report, for the first time that PdII complexes can mediate the efficient removal of various succinimide derivatives in aqueous conditions. Succinimide removal by PdII was applied for the synthesis of two ubiquitin activity-based probes (Ub-ABPs) employing solid phase chemical ligation (SPCL). SPCL was achieved through a sequential three segment ligation on a polymer support via a maleimide anchor. The obtained probes successfully formed the expected covalent complexes with deubiquitinating enzymes (DUBs) USP2 and USP7, highlighting the use of our new method for efficient preparation of unique synthetic proteins. Importantly, we demonstrate the advantages of our newly developed method for the protection and deprotection of native cysteine with a succinimide group in a peptide fragment derived from thioredoxin-1 (Trx-1) obtained via intein based expression to enable ligation/desulfurization and subsequent disulfide bond formation in a one-pot process.


Asunto(s)
Complejos de Coordinación/química , Cisteína/química , Paladio/química , Péptidos/química , Proteínas/síntesis química , Succinimidas/química , Catálisis , Reacción de Cicloadición , Disulfuros/química , Globinas/síntesis química , Inteínas , Maleimidas/química , Técnicas de Síntesis en Fase Sólida , Tiazolidinas/química , Tiorredoxinas/síntesis química , Ubiquitina/química , Ubiquitina Tiolesterasa/química
9.
Mol Cell ; 47(4): 547-57, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22748923

RESUMEN

Mitochondria play central roles in integrating pro- and antiapoptotic stimuli, and JNK is well known to have roles in activating apoptotic pathways. We establish a critical link between stress-induced JNK activation, mitofusin 2, which is an essential component of the mitochondrial outer membrane fusion apparatus, and the ubiquitin-proteasome system (UPS). JNK phosphorylation of mitofusin 2 in response to cellular stress leads to recruitment of the ubiquitin ligase (E3) Huwe1/Mule/ARF-BP1/HectH9/E3Histone/Lasu1 to mitofusin 2, with the BH3 domain of Huwe1 implicated in this interaction. This results in ubiquitin-mediated proteasomal degradation of mitofusin 2, leading to mitochondrial fragmentation and enhanced apoptotic cell death. The stability of a nonphosphorylatable mitofusin 2 mutant is unaffected by stress and protective against apoptosis. Conversely, a mitofusin 2 phosphomimic is more rapidly degraded without cellular stress. These findings demonstrate how proximal signaling events can influence both mitochondrial dynamics and apoptosis through phosphorylation-stimulated degradation of the mitochondrial fusion machinery.


Asunto(s)
Apoptosis/fisiología , GTP Fosfohidrolasas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Estrés Fisiológico/fisiología , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Línea Celular Tumoral , Humanos , MAP Quinasa Quinasa 4/metabolismo , Mitocondrias/enzimología , Fosforilación , Proteolisis , Proteínas Supresoras de Tumor , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/fisiología
10.
Mol Cell ; 40(3): 465-80, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-21070972

RESUMEN

We show that Ydr049 (renamed VCP/Cdc48-associated mitochondrial stress-responsive--Vms1), a member of an unstudied pan-eukaryotic protein family, translocates from the cytosol to mitochondria upon mitochondrial stress. Cells lacking Vms1 show progressive mitochondrial failure, hypersensitivity to oxidative stress, and decreased chronological life span. Both yeast and mammalian Vms1 stably interact with Cdc48/VCP/p97, a component of the ubiquitin/proteasome system with a well-defined role in endoplasmic reticulum-associated protein degradation (ERAD), wherein misfolded ER proteins are degraded in the cytosol. We show that oxidative stress triggers mitochondrial localization of Cdc48 and this is dependent on Vms1. When this system is impaired by mutation of Vms1, ubiquitin-dependent mitochondrial protein degradation, mitochondrial respiratory function, and cell viability are compromised. We demonstrate that Vms1 is a required component of an evolutionarily conserved system for mitochondrial protein degradation, which is necessary to maintain mitochondrial, cellular, and organismal viability.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Procesamiento Proteico-Postraduccional , Estrés Fisiológico , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Eliminación de Gen , Humanos , Peróxido de Hidrógeno/farmacología , Longevidad/efectos de los fármacos , Ratones , Viabilidad Microbiana/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Unión Proteica/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirolimus/farmacología , Estrés Fisiológico/efectos de los fármacos , Ubiquitina/metabolismo , Proteína que Contiene Valosina
11.
PLoS Genet ; 11(4): e1005178, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25919710

RESUMEN

Cellular toxicity introduced by protein misfolding threatens cell fitness and viability. Failure to eliminate these polypeptides is associated with various aggregation diseases. In eukaryotes, the ubiquitin proteasome system (UPS) plays a vital role in protein quality control (PQC), by selectively targeting misfolded proteins for degradation. While the assembly of the proteasome can be naturally impaired by many factors, the regulatory pathways that mediate the sorting and elimination of misassembled proteasomal subunits are poorly understood. Here, we reveal how the dysfunctional proteasome is controlled by the PQC machinery. We found that among the multilayered quality control mechanisms, UPS mediated degradation of its own misassembled subunits is the favored pathway. We also demonstrated that the Hsp42 chaperone mediates an alternative pathway, the accumulation of these subunits in cytoprotective compartments. Thus, we show that proteasome homeostasis is controlled through probing the level of proteasome assembly, and the interplay between UPS mediated degradation or their sorting into distinct cellular compartments.


Asunto(s)
Supervivencia Celular/genética , Aptitud Genética , Proteínas de Choque Térmico/genética , Complejo de la Endopetidasa Proteasomal/genética , Proteínas de Saccharomyces cerevisiae/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Pliegue de Proteína , Proteolisis , Saccharomyces cerevisiae , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinación/genética
12.
EMBO J ; 32(20): 2697-707, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-23982732

RESUMEN

Short-lived proteins are degraded by proteasome complexes, which contain a proteolytic core particle (CP) but differ in the number of regulatory particles (RPs) and activators. A recently described member of conserved proteasome activators is Blm10. Blm10 contains 32 HEAT-like modules and is structurally related to the nuclear import receptor importin/karyopherin ß. In proliferating yeast, RP-CP assemblies are primarily nuclear and promote cell division. During quiescence, RP-CP assemblies dissociate and CP and RP are sequestered into motile cytosolic proteasome storage granuli (PSG). Here, we show that CP sequestration into PSG depends on Blm10, whereas RP sequestration into PSG is independent of Blm10. PSG rapidly clear upon the resumption of cell proliferation and proteasomes are relocated into the nucleus. Thereby, Blm10 facilitates nuclear import of CP. Blm10-bound CP serves as an import receptor-cargo complex, as Blm10 mediates the interaction with FG-rich nucleoporins and is dissociated from the CP by Ran-GTP. Thus, Blm10 represents the first CP-dedicated nuclear import receptor in yeast.


Asunto(s)
Núcleo Celular/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Transporte Activo de Núcleo Celular/genética , Animales , Proliferación Celular , Gránulos Citoplasmáticos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Modelos Biológicos , Proteínas de Complejo Poro Nuclear/metabolismo , Organismos Modificados Genéticamente , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/fisiología , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Xenopus
14.
Mol Cell ; 36(6): 1018-33, 2009 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-20064467

RESUMEN

As a signal for substrate targeting, polyubiquitin meets various layers of receptors upstream to the 26S proteasome. We obtained structural information on two receptors, Rpn10 and Dsk2, alone and in complex with (poly)ubiquitin or with each other. A hierarchy of affinities emerges with Dsk2 binding monoubiquitin tighter than Rpn10 does, whereas Rpn10 prefers the ubiquitin-like domain of Dsk2 to monoubiquitin, with increasing affinities for longer polyubiquitin chains. We demonstrated the formation of ternary complexes of both receptors simultaneously with (poly)ubiquitin and found that, depending on the ubiquitin chain length, the orientation of the resulting complex is entirely different, providing for alternate signals. Dynamic rearrangement provides a chain-length sensor, possibly explaining how accessibility of Dsk2 to the proteasome is limited unless it carries a properly tagged cargo. We propose a mechanism for a malleable ubiquitin signal that depends both on chain length and combination of receptors to produce tetraubiquitin as an efficient signal threshold.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/fisiología , Ubiquitinas/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Modelos Moleculares , Poliubiquitina/química , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/genética , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinas/química , Ubiquitinas/genética
15.
Mol Cell ; 36(1): 141-52, 2009 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-19818717

RESUMEN

eIF3 promotes translation initiation, but relatively little is known about its full range of activities in the cell. Here, we employed affinity purification and highly sensitive LC-MS/MS to decipher the fission yeast eIF3 interactome, which was found to contain 230 proteins. eIF3 assembles into a large supercomplex, the translasome, which contains elongation factors, tRNA synthetases, 40S and 60S ribosomal proteins, chaperones, and the proteasome. eIF3 also associates with ribosome biogenesis factors and the importins-beta Kap123p and Sal3p. Our genetic data indicated that the binding to both importins-beta is essential for cell growth, and photobleaching experiments revealed a critical role for Sal3p in the nuclear import of one of the translasome constituents, the proteasome. Our data reveal the breadth of the eIF3 interactome and suggest that factors involved in translation initiation, ribosome biogenesis, translation elongation, quality control, and transport are physically linked to facilitate efficient protein synthesis.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Complejos Multiproteicos/fisiología , Complejo de la Endopetidasa Proteasomal/fisiología , Biosíntesis de Proteínas/fisiología , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Citoesqueleto de Actina/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Enzimas/metabolismo , Modelos Moleculares , Mapeo de Interacción de Proteínas/métodos , Subunidades Ribosómicas/metabolismo , Proteínas de Schizosaccharomyces pombe/análisis , Espectrometría de Masas en Tándem , beta Carioferinas/metabolismo
16.
Am J Physiol Cell Physiol ; 311(5): C793-C804, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27605452

RESUMEN

Degradation by the proteasome is the fate for a large portion of cellular proteins, and it plays a major role in maintaining protein homeostasis, as well as in regulating many cellular processes like cell cycle progression. A decrease in proteasome activity has been linked to aging and several age-related neurodegenerative pathologies and highlights the importance of the ubiquitin proteasome system regulation. While the proteasome has been traditionally viewed as a constitutive element of proteolysis, major studies have highlighted how different regulatory mechanisms can impact its activity. Importantly, alterations of proteasomal activity may have major impacts for its function and in therapeutics. On one hand, increasing proteasome activity could be beneficial to prevent the age-related downfall of protein homeostasis, whereas inhibiting or reducing its activity can prevent the proliferation of cancer cells.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas/metabolismo , Animales , Proliferación Celular/fisiología , Homeostasis/fisiología , Humanos , Neoplasias/metabolismo , Neoplasias/patología
17.
J Biol Chem ; 290(8): 4688-4704, 2015 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-25389291

RESUMEN

Protein homeostasis is largely dependent on proteolysis by the ubiquitin-proteasome system. Diverse polyubiquitin modifications are reported to target cellular proteins to the proteasome. At the proteasome, deubiquitination is an essential preprocessing event that contributes to degradation efficiency. We characterized the specificities of two proteasome-associated deubiquitinases (DUBs), Rpn11 and Ubp6, and explored their impact on overall proteasome DUB activity. This was accomplished by constructing a panel of well defined ubiquitin (Ub) conjugates, including homogeneous linkages of varying lengths as well as a heterogeneously modified target. Rpn11 and Ubp6 processed Lys(11) and Lys(63) linkages with comparable efficiencies that increased with chain length. In contrast, processing of Lys(48) linkages by proteasome was inversely correlated to chain length. Fluorescently labeled tetra-Ub chains revealed endo-chain preference for Ubp6 acting on Lys(48) and random action for Rpn11. Proteasomes were more efficient at deconjugating identical substrates than their constituent DUBs by roughly 2 orders of magnitude. Incorporation into proteasomes significantly enhanced enzymatic efficiency of Rpn11, due in part to alleviation of the autoinhibitory role of its C terminus. The broad specificity of Rpn11 could explain how proteasomes were more effective at disassembling a heterogeneously modified conjugate compared with homogeneous Lys(48)-linked chains. The reduced ability to disassemble homogeneous Lys(48)-linked chains longer than 4 Ub units may prolong residency time on the proteasome.


Asunto(s)
Endopeptidasas/metabolismo , Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Endopeptidasas/genética , Lisina/genética , Lisina/metabolismo , Poliubiquitina/genética , Complejo de la Endopetidasa Proteasomal/genética , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
18.
J Am Chem Soc ; 138(49): 16004-16015, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960333

RESUMEN

Various hypotheses have been proposed regarding how chain length, linkage type, position on substrate, and susceptibility to deubiquitinases (DUBs) affect processing of different substrates by proteasome. Here we report a new strategy for the chemical synthesis of ubiquitinated proteins to generate a set of well-defined conjugates bearing an oxime bond between the chain and the substrate. We confirmed that this isopeptide replacement is resistant to DUBs and to shaving by proteasome. Analyzing products generated by proteasomes ranked how chain length governed degradation outcome. Our results support that (1) the cleavage of the proximal isopeptide bond is not a prerequisite for proteasomal degradation, (2) by overcoming trimming at the proteasome, tetraUb is a fundamentally different signal than shorter chains, and (3) the tetra-ubiquitin chain can be degraded with the substrate. Together these results highlight the usefulness of chemistry to dissect the contribution of proteasome-associated DUBs and the complexity of the degradation process.


Asunto(s)
Enzimas Desubicuitinizantes/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/metabolismo , Enzimas Desubicuitinizantes/química , Humanos , Estructura Molecular , Complejo de la Endopetidasa Proteasomal/química , Ubiquitina/química , Proteínas Ubiquitinadas/síntesis química , Proteínas Ubiquitinadas/química
19.
Nat Chem Biol ; 10(8): 664-70, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24997605

RESUMEN

A frameshift mutation in the transcript of the ubiquitin-B gene leads to a C-terminally extended ubiquitin (Ub), UBB(+1). UBB(+1) has been considered to inhibit proteasomes and as such to be the underlying cause for toxic protein buildup correlated with certain neuropathological conditions. We demonstrate that expression of extended Ub variants leads to accumulation of heterogeneously linked polyubiquitin conjugates, indicating a pervasive effect on Ub-dependent turnover. 20S proteasomes selectively proteolyzed Ub extensions, yet no evidence for inhibition of 26S holoenzymes was found. However, among susceptible targets for inhibition was Ubp6, the primary enzyme responsible for disassembly of Lys48 linkages at 26S proteasomes. Processing of Lys48 and Lys63 linkages by other deubiquitinating enzymes (DUBs) was also inhibited. Disruption of Ub-dependent degradation by extended Ub variants may therefore be attributed to their inhibitory effect on select DUBs, thus shifting research efforts related to protein accumulation in neurodegenerative processes from proteasomes to DUBs.


Asunto(s)
Endopeptidasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Secuencia de Aminoácidos , Endopeptidasas/genética , Leupeptinas/farmacología , Datos de Secuencia Molecular , Poliubiquitina/metabolismo , Inhibidores de Proteasoma/farmacología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/genética , Ubiquitinación
20.
Mol Cell ; 32(3): 415-25, 2008 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-18995839

RESUMEN

Polyubiquitin is a diverse signal both in terms of chain length and linkage type. Lysine 48-linked ubiquitin is essential for marking targets for proteasomal degradation, but the significance and relative abundance of different linkages remain ambiguous. Here we dissect the relationship of two proteasome-associated polyubiquitin-binding proteins, Rpn10 and Dsk2, and demonstrate how Rpn10 filters Dsk2 interactions, maintaining proper function of the ubiquitin-proteasome system. Using quantitative mass spectrometry of ubiquitin, we found that in S. cerevisiae under normal growth conditions the majority of conjugated ubiquitin was linked via lysine 48 and lysine 63. In contrast, upon DSK2 induction, conjugates accumulated primarily in the form of lysine 48 linkages correlating with impaired proteolysis and cytotoxicity. By restricting Dsk2 access to the proteasome, extraproteasomal Rpn10 was essential for alleviating the cellular stress associated with Dsk2. This work highlights the importance of polyubiquitin shuttles such as Rpn10 and Dsk2 in controlling the ubiquitin landscape.


Asunto(s)
Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/aislamiento & purificación , Proteínas de Ciclo Celular/metabolismo , Humanos , Cinética , Poliubiquitina/química , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/aislamiento & purificación , Unión Proteica , Proteínas de Unión al ARN , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/aislamiento & purificación , Ubiquitinas/química , Ubiquitinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA