Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Opt ; 62(19): 5282-5293, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37707233

RESUMEN

During the Aerosol and Cloud Experiment in the Eastern North Atlantic (ACE-ENA), a variety of in situ optical sensors using shadow imaging, scattering and holography were deployed by the Atmospheric Radiation Measurement (ARM) Aerial Facility to determine cloud properties. Taking advantage of the wide, overlapping range of instrumentation, we compare in situ cloud data from several different measurement methods for droplets up to 100 µm. Data processing was tailored to the encountered conditions, leading to good agreement. Improvements include noise reduction for holography and better out-of-focus correction for shadow imaging. Comparison between direct liquid water content measurements and optical sensors showed better agreement at higher droplet number concentrations (>120/c m 3).

2.
Phys Rev Lett ; 121(20): 204501, 2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30500255

RESUMEN

The extent of droplet clustering in turbulent clouds has remained largely unquantified, and yet is of possible relevance to precipitation formation and radiative transfer. To that end, data gathered by an airborne holographic instrument are used to explore the three-dimensional spatial statistics of cloud droplet positions in homogeneous stratiform boundary-layer clouds. The three-dimensional radial distribution functions g(r) reveal unambiguous evidence of droplet clustering. Three key theoretical predictions are observed: the existence of positive correlations, onset of correlation in the turbulence dissipation range, and monotonic increase of g(r) with decreasing r. This implies that current theory captures the essential processes contributing to clustering, even at large Reynolds numbers typical of the atmosphere.

3.
Science ; 384(6695): 528-532, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38696557

RESUMEN

Marine stratocumulus clouds are the "global reflectors," sharply contrasting with the underlying dark ocean surface and exerting a net cooling on Earth's climate. The magnitude of this cooling remains uncertain in part owing to the averaged representation of microphysical processes, such as the droplet-to-drizzle transition in global climate models (GCMs). Current GCMs parameterize cloud droplet size distributions as broad, cloud-averaged gammas. Using digital holographic measurements of discrete stratocumulus cloud volumes, we found cloud droplet size distributions to be narrower at the centimeter scale, never resembling the cloud average. These local distributions tended to form pockets of similar-looking cloud regions, each characterized by a size distribution shape that is diluted to varying degrees. These observations open the way for new modeling representations of microphysical processes.

5.
Bull Am Meteorol Soc ; 100(1): 93-121, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32042201

RESUMEN

The Cloud System Evolution in the Trades (CSET) study was designed to describe and explain the evolution of the boundary layer aerosol, cloud, and thermodynamic structures along trajectories within the north-Pacific trade-winds. The study centered on 7 round-trips of the NSF NCAR Gulfstream V (GV) between Sacramento, CA and Kona, Hawaii between 1 July and 15 August 2015. The CSET observing strategy was to sample aerosol, cloud, and boundary layer properties upwind from the transition zone over the North Pacific and to resample these areas two days later. GFS forecast trajectories were used to plan the outbound flight to Hawaii with updated forecast trajectories setting the return flight plan two days later. Two key elements of the CSET observing system were the newly developed HIAPER Cloud Radar (HCR) and the High Spectral Resolution Lidar (HSRL). Together they provided unprecedented characterizations of aerosol, cloud and precipitation structures that were combined with in situ measurements of aerosol, cloud, precipitation, and turbulence properties. The cloud systems sampled included solid stratocumulus infused with smoke from Canadian wildfires, mesoscale cloud-precipitation complexes, and patches of shallow cumuli in very clean environments. Ultra-clean layers observed frequently near the top of the boundary layer were often associated with shallow, optically thin, layered veil clouds. The extensive aerosol, cloud, drizzle and boundary layer sampling made over open areas of the Northeast Pacific along 2-day trajectories during CSET is unprecedented and will enable modeling studies of boundary layer cloud system evolution and the role of different processes in that evolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA