Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Mater ; 21(8): 951-958, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35761060

RESUMEN

Precisely timed activation of genetically targeted cells is a powerful tool for the study of neural circuits and control of cell-based therapies. Magnetic control of cell activity, or 'magnetogenetics', using magnetic nanoparticle heating of temperature-sensitive ion channels enables remote, non-invasive activation of neurons for deep-tissue applications and freely behaving animal studies. However, the in vivo response time of thermal magnetogenetics is currently tens of seconds, which prevents precise temporal modulation of neural activity. Moreover, magnetogenetics has yet to achieve in vivo multiplexed stimulation of different groups of neurons. Here we produce subsecond behavioural responses in Drosophila melanogaster by combining magnetic nanoparticles with a rate-sensitive thermoreceptor (TRPA1-A). Furthermore, by tuning magnetic nanoparticles to respond to different magnetic field strengths and frequencies, we achieve subsecond, multichannel stimulation. These results bring magnetogenetics closer to the temporal resolution and multiplexed stimulation possible with optogenetics while maintaining the minimal invasiveness and deep-tissue stimulation possible only by magnetic control.


Asunto(s)
Drosophila melanogaster , Neuronas , Animales , Canales Iónicos , Fenómenos Magnéticos , Neuronas/fisiología
2.
Sensors (Basel) ; 23(24)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38139632

RESUMEN

Digital Twins offer vast potential, yet many companies, particularly small and medium-sized enterprises, hesitate to implement them. This hesitation stems partly from the challenges posed by the interdisciplinary nature of creating Digital Twins. To address these challenges, this paper explores systematic approaches for the development and creation of Digital Twins, drawing on relevant methods and approaches presented in the literature. Conducting a systematic literature review, we delve into the development of Digital Twins while also considering analogous concepts, such as Cyber-Physical Systems and Product-Service Systems. The compiled literature is categorised into three main sections: holistic approaches, architecture, and models. Each category encompasses various subcategories, all of which are detailed in this paper. Through this comprehensive review, we discuss the findings and identify research gaps, shedding light on the current state of knowledge in the field of Digital Twin development. This paper aims to provide valuable insights for practitioners and researchers alike, guiding them in navigating the complexities associated with the implementation of Digital Twins.

3.
Cogn Affect Behav Neurosci ; 21(4): 747-762, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33796986

RESUMEN

In value-based decision making, people have to weigh different options based on their subjective value. This process, however, also is influenced by choice biases, such as choice repetition: in a series of choices, people are more likely to repeat their decision than to switch to a different choice. Previously, it was shown that transcranial direct current stimulation (tDCS) can affect such choice biases. We applied tDCS over the medial prefrontal cortex to investigate whether tDCS can alter choice repetition in value-based decision making. In a preregistered study, we applied anodal, cathodal, and sham tDCS stimulation to 52 participants. While we found robust choice repetition effects, we did not find support for an effect of tDCS stimulation. We discuss these findings within the larger scope of the tDCS literature and highlight the potential roles of interindividual variability and current density strength.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Humanos , Corteza Prefrontal
4.
Neuromodulation ; 21(4): 340-347, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29024263

RESUMEN

OBJECTIVE: The objective of this work was to characterize the magnetic field (B-field) that arises in a human brain model from the application of transcranial static magnetic field stimulation (tSMS). MATERIALS AND METHODS: The spatial distribution of the B-field magnitude and gradient of a cylindrical, 5.08 cm × 2.54 cm NdFeB magnet were simulated in air and in a human head model using the finite element method and calibrated with measurements in air. The B-field was simulated for magnet placements over prefrontal, motor, sensory, and visual cortex targets. The impact of magnetic susceptibility of head tissues on the B-field was quantified. RESULTS: Peak B-field magnitude and gradient respectively ranged from 179-245 mT and from 13.3-19.0 T/m across the cortical targets. B-field magnitude, focality, and gradient decreased with magnet-cortex distance. The variation in B-field strength and gradient across the anatomical targets largely arose from the magnet-cortex distance. Head magnetic susceptibilities had negligible impact on the B-field characteristics. The half-maximum focality of the tSMS B-field ranged from 7-12 cm3 . SIGNIFICANCE: This is the first presentation and characterization of the three-dimensional (3D) spatial distribution of the B-field generated in a human brain model by tSMS. These data can provide quantitative dosing guidance for tSMS applications across various cortical targets and subjects. The finding that the B-field gradient is high near the magnet edges should be considered in studies where neural tissue is placed close to the magnet. The observation that susceptibility has negligible effects confirms assumptions in the literature.


Asunto(s)
Cabeza/fisiología , Modelos Biológicos , Estimulación Magnética Transcraneal/métodos , Fenómenos Biofísicos , Simulación por Computador , Humanos , Campos Magnéticos , Reproducibilidad de los Resultados
5.
Horm Behav ; 92: 117-127, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27816624

RESUMEN

A contribution to a special issue on Hormones and Human Competition. Previous research and theory suggest testosterone is an important hormone for modulating aggression and self-regulation. We propose that self-construal, a culturally-relevant difference in how individuals define the self in relation to others, may be an important moderator of the relationship between testosterone and behaviors linked to aggression. Within two studies (Study 1 N=80; Study 2 N=237) and an integrated data analysis, we find evidence suggesting that acute testosterone changes in men are positively associated with aggressive behavior for those with more independent self-construals, whereas basal testosterone is negatively associated with aggression when individuals have more interdependent self-construals. Although preliminary, these findings suggest that self-construal moderates the association between testosterone and aggression, thereby paving the way toward future work examining the potential cultural moderation of the behavioral effects of testosterone.


Asunto(s)
Agresión/fisiología , Autoimagen , Testosterona/análisis , Adolescente , Adulto , Femenino , Humanos , Masculino , Saliva/química , Encuestas y Cuestionarios , Juegos de Video , Adulto Joven
6.
Int Rev Psychiatry ; 29(2): 115-145, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28443696

RESUMEN

Magnetic stimulation is a non-invasive neurostimulation technique that can evoke action potentials and modulate neural circuits through induced electric fields. Biophysical models of magnetic stimulation have become a major driver for technological developments and the understanding of the mechanisms of magnetic neurostimulation and neuromodulation. Major technological developments involve stimulation coils with different spatial characteristics and pulse sources to control the pulse waveform. While early technological developments were the result of manual design and invention processes, there is a trend in both stimulation coil and pulse source design to mathematically optimize parameters with the help of computational models. To date, macroscopically highly realistic spatial models of the brain, as well as peripheral targets, and user-friendly software packages enable researchers and practitioners to simulate the treatment-specific and induced electric field distribution in the brains of individual subjects and patients. Neuron models further introduce the microscopic level of neural activation to understand the influence of activation dynamics in response to different pulse shapes. A number of models that were designed for online calibration to extract otherwise covert information and biomarkers from the neural system recently form a third branch of modelling.


Asunto(s)
Diseño de Equipo/instrumentación , Modelos Teóricos , Estimulación Magnética Transcraneal/instrumentación , Diseño de Equipo/métodos , Humanos , Estimulación Magnética Transcraneal/métodos
7.
IEEE Trans Biomed Eng ; 71(6): 1745-1755, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38206785

RESUMEN

INTRODUCTION: Transcranial magnetic stimulation (TMS) is a popular method for the noninvasive stimulation of neurons in the brain. It has become a standard instrument in experimental brain research and has been approved for a range of diagnostic and therapeutic applications. These applications require appropriately shaped coils. Various applications have been established or approved for specific coil designs with their corresponding spatial electric field distributions. However, the specific coil implementation may no longer be appropriate from the perspective of available material and manufacturing opportunities or considering the latest understanding of how to achieve induced electric fields in the head most efficiently. Furthermore, in some cases, field measurements of coils with unknown winding or a user-defined field are available and require an actual implementation. Similar applications exist for magnetic resonance imaging coils. OBJECTIVE: This work aims at introducing a complete formalism free from heuristics, iterative optimization, and ad-hoc or manual steps to form practical stimulation coils with individual turns to either equivalently match an existing coil or produce a given field. The target coil can reside on practically any sufficiently large or closed surface adjacent to or around the head. METHODS: The method derives an equivalent field through vector projection exploiting the well-known Huygens' and Love's equivalence principle. In contrast to other coil design or optimization approaches recently presented, the procedure is an explicit forward Hilbert-space vector projection or basis change. For demonstration, we map a commercial figure-of-eight coil as one of the most widely used devices and a more intricate coil recently approved clinically for addiction treatment (H4) onto a bent surface close to the head for highest efficiency and lowest field energy. RESULTS: The resulting projections are within ≤4% of the target field and reduce the necessary pulse energy by more than 40%.


Asunto(s)
Diseño de Equipo , Estimulación Magnética Transcraneal , Estimulación Magnética Transcraneal/métodos , Estimulación Magnética Transcraneal/instrumentación , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Cabeza/diagnóstico por imagen , Simulación por Computador , Imagen por Resonancia Magnética
8.
IEEE Trans Biomed Eng ; 71(2): 717, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37738182

RESUMEN

Presents corrections to the paper, (Identifiability Analysis and Noninvasive Online Estimation of the First-Order Neural Activation Dynamics in the Brain With Closed-Loop Transcranial Magnetic Stimulation).


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Estimulación Magnética Transcraneal , Encéfalo/fisiología
9.
Psychoneuroendocrinology ; 168: 107120, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39002453

RESUMEN

Acute physiological responses to psychosocial stressors are a potential pathway underlying racial disparities in stress-related illnesses. Uric acid (UA) is a potent antioxidant that has been linked to disparities in stress-related illnesses, and recent research has shown that UA is responsive to acute social stress. However, an examination of the relationships between the purinergic system and other commonly measured stress systems is lacking. Here, we measure and characterize associations of salivary uric acid (sUA) with markers of hypothalamic-pituitary-adrenal (HPA) axis activation, sympathetic-adreno-medullar (SAM) axis activation, and acute inflammation. A community sample of 103 African Americans (33 male, 70 female) completed the Trier Social Stress Test to induce social-evaluative threat. Passive drool collected before, during, and after the stressor task provided salivary reactivity measures of UA (sUA), cortisol, dehydroepiandrosterone sulfate (DHEAS), salivary alpha amylase (sAA - a surrogate marker of SAM activity) and C-reactive protein (sCRP). Multiple regressions revealed that total activation of cortisol, DHEAS, and sCRP were each positively associated with higher total activation of sUA. Additionally, DHEAS reactivity was positively associated with sUA reactivity. Relationships between HPA-axis markers and sUA were especially observed among younger and male participants. Overall, findings suggest potential coordination of stress systems with sUA in response to acute stress, which may further the contributions of biological stress processes to racial health disparities.

10.
Front Hum Neurosci ; 18: 1310320, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38384332

RESUMEN

Measurement of the input-output (IO) curves of motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) can be used to assess corticospinal excitability and motor recruitment. While IO curves have been used to study disease and pharmacology, few studies have compared the IO curves across the body. This study sought to characterize IO curve parameters across the dominant and non-dominant sides of upper and lower limbs in healthy participants. Laterality preferences were assessed in eight healthy participants and IO curves were measured bilaterally for the first dorsal interosseous (FDI), biceps brachii (BB), and tibialis anterior (TA) muscles. Results show that FDI has lower motor threshold than BB which is, in turn, lower than TA. In addition, both BB and TA have markedly shallower logarithmic IO curve slopes from small to large MEP responses than FDI. After normalizing these slopes by their midpoints to account for differences in motor thresholds, which could result from geometric factors such as the target depth, large differences in logarithmic slopes remain present between all three muscles. The differences in slopes between the muscles could not be explained by differences in normalized IO curve spreads, which relate to the extent of the cortical representation and were comparable across the muscles. The IO curve differences therefore suggest muscle-dependent variations in TMS-evoked recruitment across the primary motor cortex, which should be considered when utilizing TMS-evoked MEPs to study disease states and treatment effects.

11.
Comput Biol Med ; 178: 108689, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38875907

RESUMEN

Registering the head and estimating the scalp surface are important for various biomedical procedures, including those using neuronavigation to localize brain stimulation or recording. However, neuronavigation systems rely on manually-identified fiducial head targets and often require a patient-specific MRI for accurate registration, limiting adoption. We propose a practical technique capable of inferring the scalp shape and use it to accurately register the subject's head. Our method does not require anatomical landmark annotation or an individual MRI scan, yet achieves accurate registration of the subject's head and estimation of its surface. The scalp shape is estimated from surface samples easily acquired using existing pointer tools, and registration exploits statistical head model priors. Our method allows for the acquisition of non-trivial shapes from a limited number of data points while leveraging their object class priors, surpassing the accuracy of common reconstruction and registration methods using the same tools. The proposed approach is evaluated in a virtual study with head MRI data from 1152 subjects, achieving an average reconstruction root-mean-square error of 2.95 mm, which outperforms a common neuronavigation technique by 2.70 mm. We also characterize the error under different conditions and provide guidelines for efficient sampling. Furthermore, we demonstrate and validate the proposed method on data from 50 subjects collected with conventional neuronavigation tools and setup, obtaining an average root-mean-square error of 2.89 mm; adding landmark-based registration improves this error to 2.63 mm. The simulation and experimental results support the proposed method's effectiveness with or without landmark annotation, highlighting its broad applicability.


Asunto(s)
Modelos Anatómicos , Modelos Estadísticos , Cuero Cabelludo , Cuero Cabelludo/anatomía & histología , Neuronavegación , Puntos Anatómicos de Referencia , Tecnología Biomédica , Imagen por Resonancia Magnética , Reproducibilidad de los Resultados , Humanos , Masculino , Femenino
12.
bioRxiv ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39005397

RESUMEN

BACKGROUND: Electromagnetic forces in transcranial magnetic stimulation (TMS) coils generate a loud clicking sound that produces confounding auditory activation and is potentially hazardous to hearing. To reduce this noise while maintaining stimulation efficiency similar to conventional TMS coils, we previously developed a quiet TMS double containment coil (qTMS-DCC). OBJECTIVE: To compare the stimulation strength, perceived loudness, and EEG response between qTMS-DCC and a commercial TMS coil. METHODS: Nine healthy volunteers participated in a within-subject study design. The resting motor thresholds (RMTs) for qTMS-DCC and MagVenture Cool-B65 were measured. Psychoacoustic titration matched the Cool-B65 loudness to qTMS-DCC pulsed at 80, 100, and 120% RMT. Event-related potentials (ERPs) were recorded for both coils. The psychoacoustic titration and ERPs were acquired with the coils both on and 6 cm off the scalp, the latter isolating the effects of airborne auditory stimulation from body sound and electromagnetic stimulation. The ERP comparisons focused on a centro-frontal region that encompassed peak responses in the global signal. RESULTS: RMT did not differ significantly between the coils, with or without the EEG cap on the head. qTMS-DCC was perceived to be substantially quieter than Cool-B65. For example, qTMS-DCC at 100% coil-specific RMT sounded like Cool-B65 at 34% RMT. The general ERP waveform and topography were similar between the two coils, as were early-latency components, indicating comparable electromagnetic brain stimulation in the on-scalp condition. qTMS-DCC had a significantly smaller P180 component in both on-scalp and off-scalp conditions, supporting reduced auditory activation. CONCLUSIONS: The stimulation efficiency of qTMS-DCC matched Cool-B65, while having substantially lower perceived loudness and auditory-evoked potentials. Highlights: qTMS coil is subjectively and objectively quieter than conventional Cool-B65 coilqTMS coil at 100% motor threshold was as loud as Cool-B65 at 34% motor thresholdAttenuated coil noise reduced auditory N100 and P180 evoked response componentsqTMS coil enables reduction of auditory activation without masking.

13.
Mol Genet Genomics ; 288(9): 413-24, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23801407

RESUMEN

Methane is a key intermediate in the carbon cycle and biologically produced by methanogenic archaea. Most methanogens are able to conserve energy by reducing CO2 to methane using molecular hydrogen as electron donor (hydrogenotrophic methanogenesis), but several hydrogenotrophic methanogens can also use formate as electron donor for methanogenesis. Formate dehydrogenase (Fdh) oxidizes formate to CO2 and is involved in funneling reducing equivalents into the methanogenic pathway, but details on other factors relevant for formate-dependent physiology of methanogens are not available. To learn more about the factors involved in formate-dependent growth of Methanococcus maripaludis strain JJ, we used a recently developed system for random in vitro mutagenesis, which is based on a modified insect transposable element to create 2,865 chromosomal transposon mutants and screened them for impaired growth on formate. Of 12 M. maripaludis transposon-induced mutants exhibiting this phenotype, the transposon insertion sites in the chromosome were mapped. Among the genes, apparently affecting formate-dependent growth were those encoding archaeal transcription factor S, a regulator of ion transport, and carbon monoxide dehydrogenase/acetyl-CoA synthase. Interestingly, in seven of the mutants, transposons were localized in a 10.2 kb region where Fdh1, one of two Fdh isoforms in the organism, is encoded. Two transcription start sites within the 10.2 kb region could be mapped, and quantification of transcripts revealed that transposon insertion in this region diminished fdhA1 expression due to polar effects.


Asunto(s)
Proteínas Arqueales/biosíntesis , Formiato Deshidrogenasas/biosíntesis , Formiatos/metabolismo , Regulación de la Expresión Génica Arqueal/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Methanococcus/enzimología , Proteínas Arqueales/genética , Formiato Deshidrogenasas/genética , Methanococcus/genética , Methanococcus/crecimiento & desarrollo , Mutagénesis
14.
Psychol Sci ; 24(11): 2329-34, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24068116

RESUMEN

A growing body of evidence has linked individual differences in facial structure-in particular, the facial width-to-height ratio (FWHR)-to social behaviors, including aggression, cheating, and nonreciprocation of trust. In the research reported here, we extended this work by demonstrating that the association between FWHR and aggression is moderated by subjective and objective measures of social status. In Study 1 (N = 237 college students), FWHR was positively correlated with aggressive behavior, but only among men reporting relatively low social status. In Study 2 (N = 891 professional hockey players), FWHR was positively correlated with penalty minutes, but only among players who earned relatively low salaries. Collectively, these studies provide compelling evidence for the role of social status in moderating the relationship between facial structure and aggression, indicating that FWHR is a robust predictor of aggressive behavior, but only in the context of relatively low social status.


Asunto(s)
Agresión/psicología , Cara , Jerarquia Social , Clase Social , Adulto , Antropometría , Femenino , Humanos , Individualidad , Masculino , Método Simple Ciego , Adulto Joven
15.
J Neural Eng ; 20(5)2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37595573

RESUMEN

Objective. Thresholding of neural responses is central to many applications of transcranial magnetic stimulation (TMS), but the stochastic aspect of neuronal activity and motor evoked potentials (MEPs) challenges thresholding techniques. We analyzed existing methods for obtaining TMS motor threshold and their variations, introduced new methods from other fields, and compared their accuracy and speed.Approach. In addition to existing relative-frequency methods, such as the five-out-of-ten method, we examined adaptive methods based on a probabilistic motor threshold model using maximum-likelihood (ML) or maximuma-posteriori(MAP) estimation. To improve the performance of these adaptive estimation methods, we explored variations in the estimation procedure and inclusion of population-level prior information. We adapted a Bayesian estimation method which iteratively incorporated information of the TMS responses into the probability density function. A family of non-parametric stochastic root-finding methods with different convergence criteria and stepping rules were explored as well. The performance of the thresholding methods was evaluated with an independent stochastic MEP model.Main Results. The conventional relative-frequency methods required a large number of stimuli, were inherently biased on the population level, and had wide error distributions for individual subjects. The parametric estimation methods obtained the thresholds much faster and their accuracy depended on the estimation method, with performance significantly improved when population-level prior information was included. Stochastic root-finding methods were comparable to adaptive estimation methods but were much simpler to implement and did not rely on a potentially inaccurate underlying estimation model.Significance. Two-parameter MAP estimation, Bayesian estimation, and stochastic root-finding methods have better error convergence compared to conventional single-parameter ML estimation, and all these methods require significantly fewer TMS pulses for accurate estimation than conventional relative-frequency methods. Stochastic root-finding appears particularly attractive due to the low computational requirements, simplicity of the algorithmic implementation, and independence from potential model flaws in the parametric estimators.


Asunto(s)
Potenciales Evocados Motores , Estimulación Magnética Transcraneal , Humanos , Teorema de Bayes , Frecuencia Cardíaca , Funciones de Verosimilitud
16.
IEEE Trans Biomed Eng ; 70(9): 2564-2572, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37656637

RESUMEN

BACKGROUND: Neurons demonstrate very distinct nonlinear activation dynamics, influenced by the neuron type, morphology, ion channel expression, and various other factors. The measurement of the activation dynamics can identify the neural target of stimulation and detect deviations, e.g., for diagnosis. This paper describes a tool for closed-loop sequential parameter estimation (SPE) of the activation dynamics through transcranial magnetic stimulation (TMS). The proposed SPE method operates in real time, selects ideal stimulus parameters, detects and processes the response, and concurrently estimates the input-output (IO) curve and the first-order approximation of the activated neural target. OBJECTIVE: To develop a method for concurrent SPE of the first-order activation dynamics and IO curve with closed-loop TMS. METHOD: First, identifiability of an integrated model of the first-order neural activation dynamics and IO curve is assessed, demonstrating that at least two IO curves need to be acquired with different pulse widths. Then, a two-stage SPE method is proposed. It estimates the IO curve by using Fisher information matrix (FIM) optimization in the first stage and subsequently estimates the membrane time constant as well as the coupling gain in the second stage. The procedure continues in a sequential manner until a stopping rule is satisfied. RESULTS: The results of 73 simulation cases confirm the satisfactory estimation of the membrane time constant and coupling gain with average absolute relative errors (AREs) of 6.2% and 5.3%, respectively, with an average of 344 pulses (172 pulses for each IO curve or pulse width). The method estimates the IO curves' lower and upper plateaus, mid-point, and slope with average AREs of 0.2%, 0.7%, 0.9%, and 14.5%, respectively. The conventional time constant estimation method based on the strength-duration (S-D) curve leads to 33.3% ARE, which is 27.0% larger than 6.2% ARE obtained through the proposed real-time FIM-based SPE method in this paper. CONCLUSIONS: SPE of the activation dynamics requires acquiring at least two IO curves with different pulse widths, which needs a controllable TMS (cTMS) device with adjustable pulse duration. SIGNIFICANCE: The proposed SPE method enhances the cTMS functionality, which can contribute novel insights in research and clinical studies.


Asunto(s)
Encéfalo , Estimulación Magnética Transcraneal , Ciclohexanos , Mesilatos
17.
Biomed Eng Lett ; 13(2): 119-127, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37124104

RESUMEN

This paper proposes an efficient algorithm for automatic and optimal tuning of pulse amplitude and width for sequential parameter estimation (SPE) of the neural membrane time constant and input-output (IO) curve parameters in closed-loop electromyography-guided (EMG-guided) controllable transcranial magnetic stimulation (cTMS). The proposed SPE is performed by administering a train of optimally tuned TMS pulses and updating the estimations until a stopping rule is satisfied or the maximum number of pulses is reached. The pulse amplitude is computed by the Fisher information maximization. The pulse width is chosen by maximizing a normalized depolarization factor, which is defined to separate the optimization and tuning of the pulse amplitude and width. The normalized depolarization factor maximization identifies the critical pulse width, which is an important parameter in the identifiability analysis, without any prior neurophysiological or anatomical knowledge of the neural membrane. The effectiveness of the proposed algorithm is evaluated through simulation. The results confirm satisfactory estimation of the membrane time constant and IO curve parameters for the simulation case. By defining the stopping rule based on the satisfaction of the convergence criterion with tolerance of 0.01 for 5 consecutive times for all parameters, the IO curve parameters are estimated with 52 TMS pulses, with absolute relative estimation errors (AREs) of less than 7%. The membrane time constant is estimated with 0.67% ARE, and the pulse width value tends to the critical pulse width with 0.16% ARE with 52 TMS pulses. The results confirm that the pulse width and amplitude can be tuned optimally and automatically to estimate the membrane time constant and IO curve parameters in real-time with closed-loop EMG-guided cTMS.

18.
Soc Sci Med ; 316: 115019, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35589454

RESUMEN

OBJECTIVE: Brief, culturally-tailored, and scalable stress coping interventions are needed to address a broad range of stress-related health disparities, including among African Americans. In this study, we develop two brief justice writing interventions and demonstrate a methodological approach for evaluating how prompting African Americans to think about justice and injustice can alter responses to acute social stress. METHODS: African American women and men were randomized to a neutral writing condition or one of two justice-based writing interventions, which prompted them to recall past experiences of personal justice - with (adjunctive injustice) or without (personal justice-only) recalling and writing about injustice. Participants then completed a modified Trier Social Stress Test, during which they received feedback on poor performance. We measured cognitive performance, affect, and perceived threat in response to task feedback. We also measured blood pressure and salivary cortisol stress responses. RESULTS: Men experienced more positive emotion, performed better on the stressor task, and were less threatened by poor performance feedback in the personal justice-only condition. Men also had lower systolic blood pressure reactivity in the justice writing conditions compared to control. Women experienced less positive emotion, performed worse on the stressor task, and were more threatened by feedback in the personal justice-only condition. Women also had lower cortisol recovery after the stressor task in the adjunctive injustice condition. CONCLUSION: Thinking about justice and injustice may alter performance, affect, threat, and biological responses to acute social stress. Still, gender differences highlight that justice thinking is likely to produce heterogeneous and complex stress coping responses among African Americans.


Asunto(s)
Negro o Afroamericano , Hidrocortisona , Masculino , Humanos , Femenino , Estrés Psicológico/psicología , Justicia Social/psicología , Escritura
19.
J Neural Eng ; 20(3)2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37100051

RESUMEN

Objective.Transcranial magnetic stimulation (TMS) with monophasic pulses achieves greater changes in neuronal excitability but requires higher energy and generates more coil heating than TMS with biphasic pulses, and this limits the use of monophasic pulses in rapid-rate protocols. We sought to design a stimulation waveform that retains the characteristics of monophasic TMS but significantly reduces coil heating, thereby enabling higher pulse rates and increased neuromodulation effectiveness.Approach.A two-step optimization method was developed that uses the temporal relationship between the electric field (E-field) and coil current waveforms. The model-free optimization step reduced the ohmic losses of the coil current and constrained the error of the E-field waveform compared to a template monophasic pulse, with pulse duration as a second constraint. The second, amplitude adjustment step scaled the candidate waveforms based on simulated neural activation to account for differences in stimulation thresholds. The optimized waveforms were implemented to validate the changes in coil heating.Main results.Depending on the pulse duration and E-field matching constraints, the optimized waveforms produced 12%-75% less heating than the original monophasic pulse. The reduction in coil heating was robust across a range of neural models. The changes in the measured ohmic losses of the optimized pulses compared to the original pulse agreed with numeric predictions.Significance.The first step of the optimization approach was independent of any potentially inaccurate or incorrect model and exhibited robust performance by avoiding the highly nonlinear behavior of neural responses, whereas neural simulations were only run once for amplitude scaling in the second step. This significantly reduced computational cost compared to iterative methods using large populations of candidate solutions and more importantly reduced the sensitivity to the choice of neural model. The reduced coil heating and power losses of the optimized pulses can enable rapid-rate monophasic TMS protocols.


Asunto(s)
Corteza Motora , Estimulación Magnética Transcraneal , Estimulación Magnética Transcraneal/métodos , Corteza Motora/fisiología , Neuronas , Estimulación Eléctrica
20.
Artículo en Inglés | MEDLINE | ID: mdl-38155840

RESUMEN

The localization and tracking of neurocranial landmarks is essential in modern medical procedures, e.g., transcranial magnetic stimulation (TMS). However, state-of-the-art treatments still rely on the manual identification of head targets and require setting retroreflective markers for tracking. This limits the applicability and scalability of TMS approaches, making them time-consuming, dependent on expensive hardware, and prone to errors when retroreflective markers drift from their initial position. To overcome these limitations, we propose a scalable method capable of inferring the position of points of interest on the scalp, e.g., the International 10-20 System's neurocranial landmarks. In contrast with existing approaches, our method does not require human intervention or markers; head landmarks are estimated leveraging visible facial landmarks, optional head size measurements, and statistical head model priors. We validate the proposed approach on ground truth data from 1,150 subjects, for which facial 3D and head information is available; our technique achieves a localization RMSE of 2.56 mm on average, which is of the same order as reported by high-end techniques in TMS. Our implementation is available at https://github.com/odedsc/ANLD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA