Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(47): e2213432119, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36378644

RESUMEN

Cytochrome c (cyt c) can undergo reversible conformational changes under biologically relevant conditions. Revealing these alternative cyt c conformers at the cell and tissue level is challenging. A monoclonal antibody (mAb) identifying a key conformational change in cyt c was previously reported, but the hybridoma was rendered nonviable. To resurrect the mAb in a recombinant form, the amino-acid sequences of the heavy and light chains were determined by peptide mapping-mass spectrometry-bioinformatic analysis and used to construct plasmids encoding the full-length chains. The recombinant mAb (R1D3) was shown to perform similarly to the original mAb in antigen-binding assays. The mAb bound to a variety of oxidatively modified cyt c species (e.g., nitrated at Tyr74 or oxidized at Met80), which lose the sixth heme ligation (Fe-Met80); it did not bind to several cyt c phospho- and acetyl-mimetics. Peptide competition assays together with molecular dynamic studies support that R1D3 binds a neoepitope within the loop 40-57. R1D3 was employed to identify alternative conformations of cyt c in cells under oxidant- or senescence-induced challenge as confirmed by immunocytochemistry and immunoaffinity studies. Alternative conformers translocated to the nuclei without causing apoptosis, an observation that was further confirmed after pinocytic loading of oxidatively modified cyt c to B16-F1 cells. Thus, alternative cyt c conformers, known to gain peroxidatic function, may represent redox messengers at the cell nuclei. The availability and properties of R1D3 open avenues of interrogation regarding the presence and biological functions of alternative conformations of cyt c in mammalian cells and tissues.


Asunto(s)
Citocromos c , Hemo , Animales , Secuencia de Aminoácidos , Anticuerpos Monoclonales , Citocromos c/química , Hemo/química , Hibridomas , Oxidación-Reducción , Melanoma Experimental , Ratones
2.
Cell Metab ; 29(3): 745-754.e4, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30449685

RESUMEN

Identification of cell-surface markers specific to human pancreatic ß cells would allow in vivo analysis and imaging. Here we introduce a biomarker, ectonucleoside triphosphate diphosphohydrolase-3 (NTPDase3), that is expressed on the cell surface of essentially all adult human ß cells, including those from individuals with type 1 or type 2 diabetes. NTPDase3 is expressed dynamically during postnatal human pancreas development, appearing first in acinar cells at birth, but several months later its expression declines in acinar cells while concurrently emerging in islet ß cells. Given its specificity and membrane localization, we utilized an NTPDase3 antibody for purification of live human ß cells as confirmed by transcriptional profiling, and, in addition, for in vivo imaging of transplanted human ß cells. Thus, NTPDase3 is a cell-surface biomarker of adult human ß cells, and the antibody directed to this protein should be a useful new reagent for ß cell sorting, in vivo imaging, and targeting.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Páncreas/metabolismo , Adulto , Animales , Biomarcadores/metabolismo , Células Cultivadas , Humanos , Células Secretoras de Insulina/patología , Islotes Pancreáticos/patología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos NOD , Páncreas/patología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA