Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
N Engl J Med ; 386(24): 2283-2294, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35704480

RESUMEN

BACKGROUND: In June 2019, the Bolivian Ministry of Health reported a cluster of cases of hemorrhagic fever that started in the municipality of Caranavi and expanded to La Paz. The cause of these cases was unknown. METHODS: We obtained samples for next-generation sequencing and virus isolation. Human and rodent specimens were tested by means of virus-specific real-time quantitative reverse-transcriptase-polymerase-chain-reaction assays, next-generation sequencing, and virus isolation. RESULTS: Nine cases of hemorrhagic fever were identified; four of the patients with this illness died. The etiologic agent was identified as Mammarenavirus Chapare mammarenavirus, or Chapare virus (CHAPV), which causes Chapare hemorrhagic fever (CHHF). Probable nosocomial transmission among health care workers was identified. Some patients with CHHF had neurologic manifestations, and those who survived had a prolonged recovery period. CHAPV RNA was detected in a variety of human body fluids (including blood; urine; nasopharyngeal, oropharyngeal, and bronchoalveolar-lavage fluid; conjunctiva; and semen) and in specimens obtained from captured small-eared pygmy rice rats (Oligoryzomys microtis). In survivors of CHHF, viral RNA was detected up to 170 days after symptom onset; CHAPV was isolated from a semen sample obtained 86 days after symptom onset. CONCLUSIONS: M. Chapare mammarenavirus was identified as the etiologic agent of CHHF. Both spillover from a zoonotic reservoir and possible person-to-person transmission were identified. This virus was detected in a rodent species, O. microtis. (Funded by the Bolivian Ministry of Health and others.).


Asunto(s)
Arenavirus del Nuevo Mundo , Fiebre Hemorrágica Americana , ARN Viral , Roedores , Animales , Arenavirus del Nuevo Mundo/genética , Arenavirus del Nuevo Mundo/aislamiento & purificación , Bolivia/epidemiología , Infección Hospitalaria/transmisión , Infección Hospitalaria/virología , Transmisión de Enfermedad Infecciosa , Fiebre Hemorrágica Americana/complicaciones , Fiebre Hemorrágica Americana/genética , Fiebre Hemorrágica Americana/transmisión , Fiebre Hemorrágica Americana/virología , Fiebres Hemorrágicas Virales/genética , Fiebres Hemorrágicas Virales/transmisión , Fiebres Hemorrágicas Virales/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Reacción en Cadena de la Polimerasa , ARN Viral/genética , ARN Viral/aislamiento & purificación , Ratas/virología , Roedores/virología , Zoonosis Virales/transmisión , Zoonosis Virales/virología
2.
PLoS Pathog ; 18(10): e1010662, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36215331

RESUMEN

We have recently shown that the replication of rhinovirus, poliovirus and foot-and-mouth disease virus requires the co-translational N-myristoylation of viral proteins by human host cell N-myristoyltransferases (NMTs), and is inhibited by treatment with IMP-1088, an ultrapotent small molecule NMT inhibitor. Here, we examine the importance of N-myristoylation during vaccinia virus (VACV) infection in primate cells and demonstrate the anti-poxviral effects of IMP-1088. N-myristoylated proteins from VACV and the host were metabolically labelled with myristic acid alkyne during infection using quantitative chemical proteomics. We identified VACV proteins A16, G9 and L1 to be N-myristoylated. Treatment with NMT inhibitor IMP-1088 potently abrogated VACV infection, while VACV gene expression, DNA replication, morphogenesis and EV formation remained unaffected. Importantly, we observed that loss of N-myristoylation resulted in greatly reduced infectivity of assembled mature virus particles, characterized by significantly reduced host cell entry and a decline in membrane fusion activity of progeny virus. While the N-myristoylation of VACV entry proteins L1, A16 and G9 was inhibited by IMP-1088, mutational and genetic studies demonstrated that the N-myristoylation of L1 was the most critical for VACV entry. Given the significant genetic identity between VACV, monkeypox virus and variola virus L1 homologs, our data provides a basis for further investigating the role of N-myristoylation in poxviral infections as well as the potential of selective NMT inhibitors like IMP-1088 as broad-spectrum poxvirus inhibitors.


Asunto(s)
Virus Vaccinia , Vaccinia , Animales , Humanos , Alquinos , Ácido Mirístico/metabolismo , Vaccinia/metabolismo , Virus Vaccinia/genética , Proteínas Virales/metabolismo , Virión/metabolismo , Internalización del Virus
3.
PLoS Pathog ; 17(9): e1009633, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34547055

RESUMEN

Smallpox, caused by the solely human pathogen Variola virus (VARV), was declared eradicated in 1980. While known VARV stocks are secure, smallpox remains a bioterrorist threat agent. Recent U.S. Food and Drug Administration approval of the first smallpox anti-viral (tecovirimat) therapeutic was a successful step forward in smallpox preparedness; however, orthopoxviruses can become resistant to treatment, suggesting a multi-therapeutic approach is necessary. Animal models are required for testing medical countermeasures (MCMs) and ideally MCMs are tested directly against the pathogen of interest. Since VARV only infects humans, a representative animal model for testing therapeutics directly against VARV remains a challenge. Here we show that three different humanized mice strains are highly susceptible to VARV infection, establishing the first small animal model using VARV. In comparison, the non-humanized, immunosuppressed background mouse was not susceptible to systemic VARV infection. Following an intranasal VARV challenge that mimics the natural route for human smallpox transmission, the virus spread systemically within the humanized mouse before mortality (~ 13 days post infection), similar to the time from exposure to symptom onset for ordinary human smallpox. Our identification of a permissive/representative VARV animal model can facilitate testing of MCMs in a manner consistent with their intended use.


Asunto(s)
Modelos Animales de Enfermedad , Viruela , Animales , Humanos , Ratones , Virus de la Viruela
4.
Clin Infect Dis ; 74(10): 1821-1830, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-34463715

RESUMEN

BACKGROUND: Lassa fever is a zoonotic, acute viral illness first identified in Nigeria in 1969. An estimate shows that the "at risk" seronegative population (in Sierra Leone, Guinea, and Nigeria) may be as high as 59 million, with an annual incidence of all illnesses of 3 million, and fatalities up to 67 000, demonstrating the serious impact of the disease on the region and global health. METHODS: Histopathologic evaluation, immunohistochemical assay, and electron microscopic examination were performed on postmortem tissue samples from 12 confirmed Lassa fever cases. RESULTS: Lassa fever virus antigens and viral particles were observed in multiple organ systems and cells, including cells in the mononuclear phagocytic system and other specialized cells where it had not been described previously. CONCLUSIONS: The immunolocalization of Lassa fever virus antigens in fatal cases provides novel insightful information with clinical and pathogenetic implications. The extensive involvement of the mononuclear phagocytic system, including tissue macrophages and endothelial cells, suggests participation of inflammatory mediators from this lineage with the resulting vascular dilatation and increasing permeability. Other findings indicate the pathogenesis of Lassa fever is multifactorial and additional studies are needed.


Asunto(s)
Fiebre de Lassa , Virosis , Células Endoteliales , Humanos , Incidencia , Fiebre de Lassa/epidemiología , Virus Lassa
5.
Emerg Infect Dis ; 28(3): 510-517, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35138244

RESUMEN

Severe coronavirus disease in neonates is rare. We analyzed clinical, laboratory, and autopsy findings from a neonate in the United States who was delivered at 25 weeks of gestation and died 4 days after birth; the mother had asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and preeclampsia. We observed severe diffuse alveolar damage and localized SARS-CoV-2 by immunohistochemistry, in situ hybridization, and electron microscopy of the lungs of the neonate. We localized SARS-CoV-2 RNA in neonatal heart and liver vascular endothelium by using in situ hybridization and detected SARS-CoV-2 RNA in neonatal and placental tissues by using reverse transcription PCR. Subgenomic reverse transcription PCR suggested viral replication in lung/airway, heart, and liver. These findings indicate that in utero SARS-CoV-2 transmission contributed to this neonatal death.


Asunto(s)
COVID-19 , Complicaciones Infecciosas del Embarazo , Autopsia , Femenino , Humanos , Recién Nacido , Transmisión Vertical de Enfermedad Infecciosa , Pulmón , Placenta , Embarazo , ARN Viral/genética , SARS-CoV-2
6.
Emerg Infect Dis ; 27(4): 1023-1031, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33600302

RESUMEN

Efforts to combat the coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have placed a renewed focus on the use of transmission electron microscopy for identifying coronavirus in tissues. In attempts to attribute pathology of COVID-19 patients directly to tissue damage caused by SARS-CoV-2, investigators have inaccurately reported subcellular structures, including coated vesicles, multivesicular bodies, and vesiculating rough endoplasmic reticulum, as coronavirus particles. We describe morphologic features of coronavirus that distinguish it from subcellular structures, including particle size range (60-140 nm), intracellular particle location within membrane-bound vacuoles, and a nucleocapsid appearing in cross section as dense dots (6-12 nm) within the particles. In addition, although the characteristic spikes of coronaviruses may be visible on the virus surface, especially on extracellular particles, they are less evident in thin sections than in negative stain preparations.


Asunto(s)
COVID-19 , Estructuras Celulares , SARS-CoV-2 , Biopsia/métodos , COVID-19/patología , COVID-19/virología , Estructuras Celulares/clasificación , Estructuras Celulares/ultraestructura , Humanos , Microscopía Electrónica/métodos , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/ultraestructura
7.
Kidney Int ; 99(4): 824-827, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33493525

RESUMEN

This guidance provides clear, concise strategies for identifying coronaviruses by transmission electron microscopy of ultrathin sections of tissues or infected tissue cultures. These include a description of virus morphology as well as cell organelles that can resemble viruses. Biochemical testing and caveats are discussed. Numerous references provide information for documentation and further study.


Asunto(s)
Prueba de COVID-19 , COVID-19/diagnóstico , Microscopía Electrónica de Transmisión , SARS-CoV-2/ultraestructura , Benchmarking , COVID-19/virología , Humanos , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados
8.
Emerg Infect Dis ; 26(9): 2005-2015, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32437316

RESUMEN

An ongoing pandemic of coronavirus disease (COVID-19) is caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Characterization of the histopathology and cellular localization of SARS-CoV-2 in the tissues of patients with fatal COVID-19 is critical to further understand its pathogenesis and transmission and for public health prevention measures. We report clinicopathologic, immunohistochemical, and electron microscopic findings in tissues from 8 fatal laboratory-confirmed cases of SARS-CoV-2 infection in the United States. All cases except 1 were in residents of long-term care facilities. In these patients, SARS-CoV-2 infected epithelium of the upper and lower airways with diffuse alveolar damage as the predominant pulmonary pathology. SARS-CoV-2 was detectable by immunohistochemistry and electron microscopy in conducting airways, pneumocytes, alveolar macrophages, and a hilar lymph node but was not identified in other extrapulmonary tissues. Respiratory viral co-infections were identified in 3 cases; 3 cases had evidence of bacterial co-infection.


Asunto(s)
Betacoronavirus/patogenicidad , Infecciones por Coronavirus/patología , Neumonía Viral/patología , Anciano , COVID-19 , Infecciones por Coronavirus/virología , Femenino , Humanos , Inmunohistoquímica , Pulmón/patología , Pulmón/virología , Masculino , Microscopía Electrónica , Persona de Mediana Edad , Pandemias , Neumonía Viral/virología , SARS-CoV-2 , Estados Unidos/epidemiología
9.
Emerg Infect Dis ; 26(6): 1266-1273, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32160149

RESUMEN

The etiologic agent of an outbreak of pneumonia in Wuhan, China, was identified as severe acute respiratory syndrome coronavirus 2 in January 2020. A patient in the United States was given a diagnosis of infection with this virus by the state of Washington and the US Centers for Disease Control and Prevention on January 20, 2020. We isolated virus from nasopharyngeal and oropharyngeal specimens from this patient and characterized the viral sequence, replication properties, and cell culture tropism. We found that the virus replicates to high titer in Vero-CCL81 cells and Vero E6 cells in the absence of trypsin. We also deposited the virus into 2 virus repositories, making it broadly available to the public health and research communities. We hope that open access to this reagent will expedite development of medical countermeasures.


Asunto(s)
Betacoronavirus/aislamiento & purificación , Infecciones por Coronavirus/diagnóstico , Neumonía Viral/diagnóstico , Animales , Betacoronavirus/genética , Betacoronavirus/fisiología , COVID-19 , Línea Celular , Chlorocebus aethiops , Genoma Viral , Humanos , Nasofaringe/virología , Orofaringe/virología , Pandemias , SARS-CoV-2 , Células Vero , Tropismo Viral , Replicación Viral , Washingtón
10.
J Virol ; 93(10)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30814288

RESUMEN

Ferrets represent an invaluable animal model to study influenza virus pathogenesis and transmission. To further characterize this model, we developed a differentiated primary ferret nasal epithelial cell (FNEC) culture model for investigation of influenza A virus infection and virus-host interactions. This well-differentiated culture consists of various cell types, a mucociliary clearance system, and tight junctions, representing the nasal ciliated pseudostratified respiratory epithelium. Both α2,6-linked and α2,3-linked sialic acid (SA) receptors, which preferentially bind the hemagglutinin (HA) of human and avian influenza viruses, respectively, were detected on the apical surface of the culture with different cellular tropisms. In accordance with the distribution of SA receptors, we observed that a pre-2009 seasonal A(H1N1) virus infected both ciliated and nonciliated cells, whereas a highly pathogenic avian influenza (HPAI) A(H5N1) virus primarily infected nonciliated cells. Transmission electron microscopy revealed that virions were released from or associated with the apical membranes of ciliated, nonciliated, and mucin-secretory goblet cells. Upon infection, the HPAI A(H5N1) virus replicated to titers higher than those of the human A(H1N1) virus at 37°C; however, replication of the A(H5N1) virus was significantly attenuated at 33°C. Furthermore, we found that infection with the A(H5N1) virus induced higher expression levels of immune mediator genes and resulted in more cell damage/loss than with the human A(H1N1) virus. This primary differentiated FNEC culture model, recapitulating the structure of the nasal epithelium, provides a useful model to bridge in vivo and in vitro studies of cellular tropism, infectivity, and pathogenesis of influenza viruses during the initial stages of infection.IMPORTANCE Although ferrets serve as an important model of influenza virus infection, much remains unknown about virus-host interactions in this species at the cellular level. The development of differentiated primary cultures of ferret nasal epithelial cells is an important step toward understanding cellular tropism and the mechanisms of influenza virus infection and replication in the airway milieu of this model. Using lectin staining and microscopy techniques, we characterized the sialic acid receptor distribution and the cellular composition of the culture model. We then evaluated the replication of and immune response to human and avian influenza viruses at relevant physiological temperatures. Our findings offer significant insight into this first line of defense against influenza virus infection and provide a model for the evaluation of emerging influenza viruses in a well-controlled in vitro environmental setting.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Tropismo Viral/genética , Animales , Bronquios/virología , Técnicas de Cultivo de Célula/métodos , Cilios/virología , Modelos Animales de Enfermedad , Células Epiteliales/virología , Hurones/virología , Células Caliciformes/metabolismo , Células Caliciformes/virología , Humanos , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Virus de la Influenza A/fisiología , Gripe Humana/virología , Mucosa Nasal/metabolismo , Mucosa Nasal/virología , Cultivo Primario de Células , Receptores de Superficie Celular/metabolismo , Receptores Virales/metabolismo , Mucosa Respiratoria/virología , Tráquea/virología , Virosis/genética
11.
J Virol ; 93(13)2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30971476

RESUMEN

In 2011, ticks were collected from livestock following an outbreak of Crimean Congo hemorrhagic fever (CCHF) in Gujarat state, India. CCHF-negative Hyalomma anatolicum tick pools were passaged for virus isolation, and two virus isolates were obtained, designated Karyana virus (KARYV) and Kundal virus (KUNDV), respectively. Traditional reverse transcription-PCR (RT-PCR) identification of known viruses was unsuccessful, but a next-generation sequencing (NGS) approach identified KARYV and KUNDV as viruses in the Reoviridae family, Orbivirus and Coltivirus genera, respectively. Viral genomes were de novo assembled, yielding 10 complete segments of KARYV and 12 nearly complete segments of KUNDV. The VP1 gene of KARYV shared a most recent common ancestor with Wad Medani virus (WMV), strain Ar495, and based on nucleotide identity we demonstrate that it is a novel WMV strain. The VP1 segment of KUNDV shares a common ancestor with Colorado tick fever virus, Eyach virus, Tai Forest reovirus, and Tarumizu tick virus from the Coltivirus genus. Based on VP1, VP6, VP7, and VP12 nucleotide and amino acid identities, KUNDV is proposed to be a new species of Coltivirus Electron microscopy supported the classification of KARYV and KUNDV as reoviruses and identified replication morphology consistent with other orbi- and coltiviruses. The identification of novel tick-borne viruses carried by the CCHF vector is an important step in the characterization of their potential role in human and animal pathogenesis.IMPORTANCE Ticks and mosquitoes, as well Culicoides, can transmit viruses in the Reoviridae family. With the help of next-generation sequencing (NGS), previously unreported reoviruses such as equine encephalosis virus, Wad Medani virus (WMV), Kammavanpettai virus (KVPTV), and, with this report, KARYV and KUNDV have been discovered and characterized in India. The isolation of KUNDV and KARYV from Hyalomma anatolicum, which is a known vector for zoonotic pathogens, such as Crimean Congo hemorrhagic fever virus, Babesia, Theileria, and Anaplasma species, identifies arboviruses with the potential to transmit to humans. Characterization of KUNDV and KARYV isolated from Hyalomma ticks is critical for the development of specific serological and molecular assays that can be used to determine the association of these viruses with disease in humans and livestock.


Asunto(s)
Coltivirus/clasificación , Coltivirus/aislamiento & purificación , Virus de la Fiebre Hemorrágica de Crimea-Congo/aislamiento & purificación , Fiebre Hemorrágica de Crimea/complicaciones , Orbivirus/clasificación , Orbivirus/aislamiento & purificación , Filogenia , Garrapatas/virología , Animales , Chlorocebus aethiops , Coltivirus/genética , Culicidae/virología , Genoma Viral , Virus de la Fiebre Hemorrágica de Crimea-Congo/clasificación , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Fiebre Hemorrágica de Crimea/epidemiología , Fiebre Hemorrágica de Crimea/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , India , Mosquitos Vectores/virología , Orbivirus/genética , Reoviridae/clasificación , Reoviridae/genética , Reoviridae/aislamiento & purificación , Reoviridae/ultraestructura , Células Vero , Ensayo de Placa Viral , Proteínas Virales/genética
12.
J Cutan Pathol ; 47(7): 659-663, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32125011

RESUMEN

Microsporidia are a group of obligate intracellular parasites that naturally infect domestic and wild animals. Human microsporidiosis is an increasingly recognized multisystem opportunistic infection. The clinical manifestations are diverse with diarrhea being the most common presenting symptom. We present a 52-year-old woman with a history of amyopathic dermatomyositis complicated by interstitial lung disease managed with mycophenolate mofetil and hydroxychloroquine who presented with a 7-month history of recurrent subcutaneous nodules as well as intermittent diarrhea and chronic sinusitis. A punch biopsy showed superficial and deep lymphocytic and granulomatous dermatitis with focal necrosis. Tissue stains for microorganisms revealed oval 1 to 3 µm spores within the necrotic areas in multiple tissue stains. Additional studies at the Centers for Disease Control and Prevention confirmed cutaneous microsporidiosis. This case is one of very few confirmed examples of cutaneous microsporidiosis reported in the literature.


Asunto(s)
Dermatomicosis/inmunología , Huésped Inmunocomprometido , Microsporidiosis/inmunología , Dermatomiositis/complicaciones , Dermatomiositis/tratamiento farmacológico , Inhibidores Enzimáticos/uso terapéutico , Femenino , Humanos , Hidroxicloroquina/uso terapéutico , Enfermedades Pulmonares Intersticiales/etiología , Persona de Mediana Edad , Ácido Micofenólico/uso terapéutico
13.
J Infect Dis ; 220(8): 1281-1289, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31152662

RESUMEN

Lassa fever is a frequently severe human disease that is endemic to several countries in West Africa. To date, no licensed vaccines are available to prevent Lassa virus (LASV) infection, even though Lassa fever is thought to be an important disease contributing to mortality and both acute and chronic morbidity. We have previously described a vaccine candidate composed of single-cycle LASV replicon particles (VRPs) and a stable cell line for their production. Here, we refine the genetic composition of the VRPs and demonstrate the ability to reproducibly purify them with high yields. Studies in the guinea pig model confirm efficacy of the vaccine candidate, demonstrate that single-cycle replication is necessary for complete protection by the VRP vaccine, and show that postexposure vaccination can confer protection from lethal outcome.


Asunto(s)
Fiebre de Lassa/prevención & control , Virus Lassa/inmunología , Profilaxis Posexposición/métodos , Vacunación/métodos , Vacunas Virales/administración & dosificación , Células A549 , África Occidental , Animales , Chlorocebus aethiops , Modelos Animales de Enfermedad , Femenino , Cobayas , Humanos , Esquemas de Inmunización , Fiebre de Lassa/virología , Virus Lassa/genética , Virus Lassa/aislamiento & purificación , Masculino , Replicón/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Células Vero , Vacunas Virales/genética , Vacunas Virales/inmunología
14.
J Infect Dis ; 218(3): 485-489, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29659908

RESUMEN

Human protothecosis is a rare microalgae infection, and its dissemination typically occurs in immunocompromised individuals, but no specific immune defect has been reported. Here, we describe an 8-year-old daughter of a consanguineous union with abdominal pain and bloody diarrhea for 3 months who was found to have pancolitis with numerous microalgae identified as Prototheca zopfii. In the absence of a known immunodeficiency, exome sequencing was performed, which uncovered a novel recessive frameshift mutation in CARD9 (p.V261fs). This report highlights that CARD9 deficiency should be investigated in patients with unexplained systemic/visceral protothecosis and suggests a new mechanistic insight into anti-Prototheca immunity.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/genética , Candidiasis Mucocutánea Crónica/complicaciones , Colitis/genética , Colitis/patología , Prototheca/aislamiento & purificación , Niño , Femenino , Mutación del Sistema de Lectura , Humanos
15.
N Engl J Med ; 372(13): 1223-30, 2015 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-25806914

RESUMEN

During 2013, cutaneous lesions developed in two men in the country of Georgia after they were exposed to ill cows. The men had never received vaccination against smallpox. Tests of lesion material with the use of a quantitative real-time polymerase-chain-reaction assay for non-variola virus orthopoxviruses were positive, and DNA sequence analysis implicated a novel orthopoxvirus species. During the ensuing epidemiologic investigation, no additional human cases were identified. However, serologic evidence of exposure to an orthopoxvirus was detected in cows in the patients' herd and in captured rodents and shrews. A third case of human infection that occurred in 2010 was diagnosed retrospectively during testing of archived specimens that were originally submitted for tests to detect anthrax. Orthopoxvirus infection should be considered in persons in whom cutaneous lesions develop after contact with animals.


Asunto(s)
Enfermedades de los Bovinos/transmisión , Orthopoxvirus/aislamiento & purificación , Infecciones por Poxviridae/transmisión , Zoonosis/transmisión , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Anticuerpos Antivirales/sangre , Bovinos , ADN Viral/análisis , Femenino , Georgia , Humanos , Masculino , Glándulas Mamarias Animales/virología , Persona de Mediana Edad , Orthopoxvirus/genética , Filogenia , Infecciones por Poxviridae/virología , Roedores/virología , Musarañas/virología , Vacuna contra Viruela , Adulto Joven , Zoonosis/virología
16.
J Virol ; 91(11)2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28331092

RESUMEN

Monkeypox virus (MPXV) is a human pathogen that is a member of the Orthopoxvirus genus, which includes Vaccinia virus and Variola virus (the causative agent of smallpox). Human monkeypox is considered an emerging zoonotic infectious disease. To identify host factors required for MPXV infection, we performed a genome-wide insertional mutagenesis screen in human haploid cells. The screen revealed several candidate genes, including those involved in Golgi trafficking, glycosaminoglycan biosynthesis, and glycosylphosphatidylinositol (GPI)-anchor biosynthesis. We validated the role of a set of vacuolar protein sorting (VPS) genes during infection, VPS51 to VPS54 (VPS51-54), which comprise the Golgi-associated retrograde protein (GARP) complex. The GARP complex is a tethering complex involved in retrograde transport of endosomes to the trans-Golgi apparatus. Our data demonstrate that VPS52 and VPS54 were dispensable for mature virion (MV) production but were required for extracellular virus (EV) formation. For comparison, a known antiviral compound, ST-246, was used in our experiments, demonstrating that EV titers in VPS52 and VPS54 knockout (KO) cells were comparable to levels exhibited by ST-246-treated wild-type cells. Confocal microscopy was used to examine actin tail formation, one of the viral egress mechanisms for cell-to-cell dissemination, and revealed an absence of actin tails in VPS52KO- or VPS54KO-infected cells. Further evaluation of these cells by electron microscopy demonstrated a decrease in levels of wrapped viruses (WVs) compared to those seen with the wild-type control. Collectively, our data demonstrate the role of GARP complex genes in double-membrane wrapping of MVs necessary for EV formation, implicating the host endosomal trafficking pathway in orthopoxvirus infection.IMPORTANCE Human monkeypox is an emerging zoonotic infectious disease caused by Monkeypox virus (MPXV). Of the two MPXV clades, the Congo Basin strain is associated with severe disease, increased mortality, and increased human-to-human transmission relative to the West African strain. Monkeypox is endemic in regions of western and central Africa but was introduced into the United States in 2003 from the importation of infected animals. The threat of MPXV and other orthopoxviruses is increasing due to the absence of routine smallpox vaccination leading to a higher proportion of naive populations. In this study, we have identified and validated candidate genes that are required for MPXV infection, specifically, those associated with the Golgi-associated retrograde protein (GARP) complex. Identifying host targets required for infection that prevents extracellular virus formation such as the GARP complex or the retrograde pathway can provide a potential target for antiviral therapy.


Asunto(s)
Endosomas/metabolismo , Interacciones Huésped-Patógeno , Proteínas de la Membrana/genética , Monkeypox virus/fisiología , Proteínas de Transporte Vesicular/metabolismo , Actinas/efectos de los fármacos , Actinas/metabolismo , Animales , Benzamidas/farmacología , Transporte Biológico , Línea Celular , Genoma Humano , Glicosaminoglicanos/biosíntesis , Glicosaminoglicanos/genética , Glicosilfosfatidilinositoles/biosíntesis , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Haploidia , Humanos , Isoindoles/farmacología , Proteínas de la Membrana/metabolismo , Mpox/virología , Mutagénesis Insercional , Proteínas de Transporte Vesicular/genética , Carga Viral , Replicación Viral
17.
J Infect Dis ; 216(11): 1386-1397, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-28482001

RESUMEN

Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne viral hemorrhagic disease seen exclusively in humans. Central nervous system (CNS) infection and neurological involvement have also been reported in CCHF. In the current study, we inoculated NSG-SGM3 mice engrafted with human hematopoietic CD34+ stem cells with low-passage CCHF virus strains isolated from human patients. In humanized mice, lethal disease develops, characterized by histopathological change in the liver and brain. To date, targets of neurological infection and disease have not been investigated in CCHF. CNS disease in humanized mice was characterized by gliosis, meningitis, and meningoencephalitis, and glial cells were identified as principal targets of infection. Humanized mice represent a novel lethal model for studies of CCHF countermeasures, and CCHF-associated CNS disease. Our data suggest a role for astrocyte dysfunction in neurological disease and identify key regions of infection in the CNS for future investigations of CCHF.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo/patogenicidad , Fiebre Hemorrágica de Crimea/patología , Neuroglía/patología , Neuroglía/virología , Animales , Anticuerpos Antivirales , Encéfalo/patología , Línea Celular , Sistema Nervioso Central/patología , Sistema Nervioso Central/virología , Chlorocebus aethiops , Femenino , Gliosis/patología , Gliosis/virología , Trasplante de Células Madre Hematopoyéticas , Fiebre Hemorrágica de Crimea/virología , Humanos , Hígado/patología , Meningitis/patología , Meningitis/virología , Meningoencefalitis/patología , Meningoencefalitis/virología , Ratones , Enfermedades por Picaduras de Garrapatas/patología , Células Vero
18.
J Infect Dis ; 215(1): 64-69, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27226206

RESUMEN

Here we describe clinicopathologic features of Ebola virus disease in pregnancy. One woman infected with Sudan virus in Gulu, Uganda, in 2000 had a stillbirth and survived, and another woman infected with Bundibugyo virus had a live birth with maternal and infant death in Isiro, the Democratic Republic of the Congo in 2012. Ebolavirus antigen was seen in the syncytiotrophoblast and placental maternal mononuclear cells by immunohistochemical analysis, and no antigen was seen in fetal placental stromal cells or fetal organs. In the Gulu case, ebolavirus antigen localized to malarial parasite pigment-laden macrophages. These data suggest that trophoblast infection may be a mechanism of transplacental ebolavirus transmission.


Asunto(s)
Ebolavirus/aislamiento & purificación , Fiebre Hemorrágica Ebola/patología , Fiebre Hemorrágica Ebola/virología , Complicaciones Infecciosas del Embarazo/patología , Complicaciones Infecciosas del Embarazo/virología , Adulto , Anticuerpos Antivirales/sangre , Antígenos Virales/inmunología , Antígenos Virales/aislamiento & purificación , República Democrática del Congo , Ebolavirus/química , Ebolavirus/genética , Ebolavirus/inmunología , Femenino , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/transmisión , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Inmunohistoquímica , Macrófagos/parasitología , Macrófagos/ultraestructura , Macrófagos/virología , Malaria/complicaciones , Malaria/inmunología , Malaria/virología , Microscopía Electrónica de Transmisión , Placenta/ultraestructura , Placenta/virología , Reacción en Cadena de la Polimerasa , Embarazo , Complicaciones Infecciosas del Embarazo/inmunología , Complicaciones Infecciosas del Embarazo/parasitología , Mortinato , Células del Estroma/ultraestructura , Células del Estroma/virología , Trofoblastos/parasitología , Trofoblastos/ultraestructura , Trofoblastos/virología
19.
Clin Infect Dis ; 64(12): 1737-1741, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28329402

RESUMEN

BACKGROUND.: Human infection by orthopoxviruses is being reported with increasing frequency, attributed in part to the cessation of smallpox vaccination and concomitant waning of population-level immunity. In July 2015, a female resident of interior Alaska presented to an urgent care clinic with a dermal lesion consistent with poxvirus infection. Laboratory testing of a virus isolated from the lesion confirmed infection by an Orthopoxvirus. METHODS.: The virus isolate was characterized by using electron microscopy and nucleic acid sequencing. An epidemiologic investigation that included patient interviews, contact tracing, and serum testing, as well as environmental and small-mammal sampling, was conducted to identify the infection source and possible additional cases. RESULTS.: Neither signs of active infection nor evidence of recent prior infection were observed in any of the 4 patient contacts identified. The patient's infection source was not definitively identified. Potential routes of exposure included imported fomites from Azerbaijan via the patient's cohabiting partner or wild small mammals in or around the patient's residence. Phylogenetic analyses demonstrated that the virus represents a distinct and previously undescribed genetic lineage of Orthopoxvirus, which is most closely related to the Old World orthopoxviruses. CONCLUSIONS.: Investigation findings point to infection of the patient after exposure in or near Fairbanks. This conclusion raises questions about the geographic origins (Old World vs North American) of the genus Orthopoxvirus. Clinicians should remain vigilant for signs of poxvirus infection and alert public health officials when cases are suspected.


Asunto(s)
Orthopoxvirus/aislamiento & purificación , Infecciones por Poxviridae/diagnóstico , Infecciones por Poxviridae/virología , Alaska , Animales , Anticuerpos Antivirales/sangre , ADN Viral/sangre , Femenino , Fómites/virología , Humanos , Mamíferos/virología , Microscopía Electrónica , Persona de Mediana Edad , Orthopoxvirus/clasificación , Orthopoxvirus/genética , Orthopoxvirus/ultraestructura , Filogenia , Análisis de Secuencia de ADN , Piel/patología , Piel/virología
20.
Emerg Infect Dis ; 23(3): 387-395, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28220747

RESUMEN

In April 2014, a kidney transplant recipient in the United States experienced headache, diplopia, and confusion, followed by neurologic decline and death. An investigation to evaluate the possibility of donor-derived infection determined that 3 patients had received 4 organs (kidney, liver, heart/kidney) from the same donor. The liver recipient experienced tremor and gait instability; the heart/kidney and contralateral kidney recipients were hospitalized with encephalitis. None experienced gastrointestinal symptoms. Encephalitozoon cuniculi was detected by tissue PCR in the central nervous system of the deceased kidney recipient and in renal allograft tissue from both kidney recipients. Urine PCR was positive for E. cuniculi in the 2 surviving recipients. Donor serum was positive for E. cuniculi antibodies. E. cuniculi was transmitted to 3 recipients from 1 donor. This rare presentation of disseminated disease resulted in diagnostic delays. Clinicians should consider donor-derived microsporidial infection in organ recipients with unexplained encephalitis, even when gastrointestinal manifestations are absent.


Asunto(s)
Encefalitis/microbiología , Encephalitozoon cuniculi , Trasplante de Corazón/efectos adversos , Trasplante de Riñón/efectos adversos , Trasplante de Hígado/efectos adversos , Microsporidiosis/transmisión , Donantes de Tejidos , Resultado Fatal , Femenino , Humanos , Masculino , Microsporidiosis/microbiología , Microsporidiosis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA