Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cereb Cortex ; 34(3)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38494419

RESUMEN

Alterations to the resting-state default mode network (rsDMN) are early indicators of memory decline and Alzheimer's disease (AD). Brain regions shared by the rsDMN and memory circuitry are highly sexually dimorphic. However, data are limited regarding the impact of sex and reproductive status on rsDMN connectivity and memory circuitry and function. In the current investigation, rsDMN connectivity was assessed in 180 early midlife adults aged 45 to 55 by sex and reproductive status (87 women; 93 men). Associations between left and right hippocampal connectivity of rsDMN and verbal memory encoding circuitry were examined using linear mixed models, controlled for age and parental socioeconomic status, testing interactions by sex and reproductive status. Relative to men, women exhibited greater rsDMN connectivity between the left and right hippocampus. In relation to rsDMN-memory encoding connectivity, sex differences were revealed across the menopausal transition, such that only postmenopausal women exhibited loss of the ability to decrease rsDMN left-right hippocampal connectivity during memory encoding associated with poorer memory performance. Results demonstrate that sex and reproductive status play an important role in aging of the rsDMN and interactions with memory circuitry/function. This suggests the critical importance of sex and reproductive status when studying early midlife indicators of memory decline and AD risk.


Asunto(s)
Envejecimiento , Red en Modo Predeterminado , Femenino , Humanos , Masculino , Encéfalo/diagnóstico por imagen , Trastornos de la Memoria , Menopausia , Persona de Mediana Edad
2.
Horm Behav ; 165: 105631, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39232410

RESUMEN

Telomere length (TL) is an important cellular marker of biological aging impacting the brain and heart. However, how it is related to the brain (e.g., cognitive function and neuroanatomic architecture), and how these relationships may vary by sex and reproductive status, is not well established. Here we assessed the association between leukocyte TL and memory circuitry regional brain volumes and memory performance in early midlife, in relation to sex and reproductive status. Participants (N = 198; 95 females, 103 males; ages 45-55) underwent structural MRI and neuropsychological assessments of verbal, associative, and working memory. Overall, shorter TL was associated with smaller white matter volume in the parahippocampal gyrus and dorsolateral prefrontal cortex. In males, shorter TL was associated with worse working memory performance and corresponding smaller white matter volumes in the parahippocampal gyrus, anterior cingulate cortex, and dorsolateral prefrontal cortex. In females, the impact of cellular aging was revealed over the menopausal transition. In postmenopausal females, shorter TL was associated with poor associative memory performance and smaller grey matter volume in the right hippocampus. In contrast, TL was not related to memory performance or grey and white matter volumes in any memory circuitry region in pre/perimenopausal females. Results demonstrated that shorter TL is associated with worse memory function and smaller volume in memory circuitry regions in early midlife, an association that differs by sex and reproductive status. Taken together, TL may serve as an early indicator of sex-dependent brain abnormalities in early midlife.

3.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33876747

RESUMEN

Stress is associated with numerous chronic diseases, beginning in fetal development with in utero exposures (prenatal stress) impacting offspring's risk for disorders later in life. In previous studies, we demonstrated adverse maternal in utero immune activity on sex differences in offspring neurodevelopment at age seven and adult risk for major depression and psychoses. Here, we hypothesized that in utero exposure to maternal proinflammatory cytokines has sex-dependent effects on specific brain circuitry regulating stress and immune function in the offspring that are retained across the lifespan. Using a unique prenatal cohort, we tested this hypothesis in 80 adult offspring, equally divided by sex, followed from in utero development to midlife. Functional MRI results showed that exposure to proinflammatory cytokines in utero was significantly associated with sex differences in brain activity and connectivity during response to negative stressful stimuli 45 y later. Lower maternal TNF-α levels were significantly associated with higher hypothalamic activity in both sexes and higher functional connectivity between hypothalamus and anterior cingulate only in men. Higher prenatal levels of IL-6 were significantly associated with higher hippocampal activity in women alone. When examined in relation to the anti-inflammatory effects of IL-10, the ratio TNF-α:IL-10 was associated with sex-dependent effects on hippocampal activity and functional connectivity with the hypothalamus. Collectively, results suggested that adverse levels of maternal in utero proinflammatory cytokines and the balance of pro- to anti-inflammatory cytokines impact brain development of offspring in a sexually dimorphic manner that persists across the lifespan.


Asunto(s)
Conectoma , Citocinas/sangre , Efectos Tardíos de la Exposición Prenatal/diagnóstico por imagen , Estrés Psicológico/diagnóstico por imagen , Adulto , Femenino , Humanos , Hipotálamo/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Embarazo , Factores Sexuales
4.
Appetite ; 168: 105707, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34562531

RESUMEN

BACKGROUND: Emotional eating has emerged as a contributing factor to overeating, potentially leading to obesity or disordered eating behaviors. However, the underlying biological mechanisms related to emotional eating remain unclear. The present study examined emotional, hormonal, and neural alterations elicited by an acute laboratory stressor in individuals with and without emotional eating. METHODS: Emotional (n = 13) and non-emotional eaters (n = 15) completed two main study visits, one week apart: one visit included a Stress version and the other a No-stress version of the Maastricht Acute Stress Task (MAST). Immediately pre- and post-MAST, blood was drawn for serum cortisol and participants rated their anxiety level. After the MAST, participants completed a Food Incentive Delay (FID) task during functional magnetic resonance imaging (fMRI), followed by an ad libitum snack period. RESULTS: Emotional eaters exhibited elevated anxiety (p = 0.037) and cortisol (p = 0.001) in response to the Stress MAST. There were no changes in anxiety or cortisol among non-emotional eaters in response to the Stress MAST or in either group in response to the No-stress MAST. In response to the Stress MAST, emotional eaters exhibited reduced activation during anticipation of food reward in mesolimbic reward regions (caudate: p = 0.014, nucleus accumbens: p = 0.022, putamen: p = 0.013), compared to non-emotional eaters. Groups did not differ in snack consumption. CONCLUSIONS: These data indicate disrupted neuroendocrine and neural responsivity to psychosocial stress amongst otherwise-healthy emotional eaters, who demonstrated hyperactive HPA-axis response coupled with hypoactivation in reward circuitry. Differential responsivity to stress may represent a risk factor in the development of maladaptive eating behaviors.


Asunto(s)
Conducta Alimentaria , Estrés Psicológico , Ingestión de Alimentos , Emociones , Humanos , Hidrocortisona , Imagen por Resonancia Magnética , Recompensa
5.
Magn Reson Med ; 85(5): 2359-2369, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33216412

RESUMEN

PURPOSE: Gamma-aminobutyric acid (GABA) abnormalities have been implicated in a range of neuropsychiatric disorders. Despite substantial interest in probing GABA in vivo, human imaging studies relying on magnetic resonance spectroscopy (MRS) have generally been hindered by technical challenges, including GABA's relatively low concentration and spectral overlap with other metabolites. Although past studies have shown moderate-to-strong test-retest repeatability and reliability of GABA within certain brain regions, many of these studies have been limited by small sample sizes. METHODS: GABA+ (macromolecular-contaminated) test-retest reliability and repeatability were assessed via a Meshcher-Garwood point resolved spectroscopy (MEGA-PRESS) MRS sequence in the rostral anterior cingulate cortex (rACC; n = 21) and dorsolateral prefrontal cortex (dlPFC; n = 20) in healthy young adults. Data were collected on a 3T scanner (Siemens Prisma, Siemens Healthcare, Erlangen, Germany) and GABA+ results were reported in reference to both total creatine (GABA+/tCr) and water (GABA+/water). RESULTS: Results showed strong test-retest repeatability (mean GABA+/tCr coefficient of variation [CV] = 4.6%; mean GABA+/water CV = 4.0%) and reliability (GABA+/tCr intraclass correlation coefficient [ICC] = 0.77; GABA+/water ICC = 0.87) in the dlPFC. The rACC showed acceptable (but comparatively lower) repeatability (mean GABA+/tCr CV = 8.0%; mean GABA+/water CV = 7.5%), yet low-moderate reliability (GABA+/tCr ICC = 0.40; GABA+/water ICC = 0.44). CONCLUSION: The present study found excellent GABA+ MRS repeatability and reliability in the dlPFC. The rACC showed inferior results, possibly because of a combination of shimming impedance and measurement error. These data suggest that MEGA-PRESS can be utilized to reliably distinguish participants based on dlPFC GABA+ levels, whereas the mixed results in the rACC merit further investigation.


Asunto(s)
Imagen por Resonancia Magnética , Ácido gamma-Aminobutírico , Alemania , Humanos , Espectroscopía de Resonancia Magnética , Reproducibilidad de los Resultados , Adulto Joven
6.
Blood ; 134(20): 1712-1716, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31530563

RESUMEN

Tightly regulated production of mature blood cells is essential for health and survival in vertebrates and dependent on discrete populations of blood-forming (hematopoietic) stem and progenitor cells. Prior studies suggested that inhibition of growth differentiation factor 11 (GDF11) through soluble activin receptor type II (ActRII) ligand traps or neutralizing antibodies promotes erythroid precursor cell maturation and red blood cell formation in contexts of homeostasis and anemia. As Gdf11 is expressed by mature hematopoietic cells, and erythroid precursor cell expression of Gdf11 has been implicated in regulating erythropoiesis, we hypothesized that genetic disruption of Gdf11 in blood cells might perturb normal hematopoiesis or recovery from hematopoietic insult. Contrary to these predictions, we found that deletion of Gdf11 in the hematopoietic lineage in mice does not alter erythropoiesis or erythroid precursor cell frequency under normal conditions or during hematopoietic recovery after irradiation and transplantation. In addition, although hematopoietic cell-derived Gdf11 may contribute to the pool of circulating GDF11 protein during adult homeostasis, loss of Gdf11 specifically in the blood system does not impair hematopoietic stem cell function or induce overt pathological consequences. Taken together, these results reveal that hematopoietic cell-derived Gdf11 is largely dispensable for native and transplant-induced blood formation.


Asunto(s)
Proteínas Morfogenéticas Óseas/genética , Eliminación de Gen , Factores de Diferenciación de Crecimiento/genética , Hematopoyesis , Animales , Células Cultivadas , Femenino , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Masculino , Ratones
7.
J Nutr ; 151(8): 2465-2476, 2021 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-33852013

RESUMEN

BACKGROUND: Obesity has one of the highest refractory rates of all chronic diseases, in part because weight loss induced by calorie restriction, the first-line treatment for obesity, elicits biological adaptations that promote weight regain. Although acute feeding trials suggest a role for macronutrient composition in modifying brain activity related to hunger and satiety, relevance of these findings to weight-loss maintenance has not been studied. OBJECTIVES: We investigated effects of weight-loss maintenance diets varying in macronutrient content on regional cerebral blood flow (rCBF) in brain regions involved in hunger and reward. METHODS: In conjunction with a randomized controlled feeding trial, we investigated the effects of weight-loss maintenance diets varying in carbohydrate content [high, 60% of total energy: n = 20; 6 men/14 women; mean age: 32.5 y; mean BMI (in kg/m 2): 27.4; moderate, 40% of total energy: n = 22; 10 men/12 women; mean age: 32.5 y; mean BMI: 29.0; low, 20% of total energy: n = 28; 12 men/16 women; mean age: 33.2 y; mean BMI: 27.7] on rCBF in brain regions involved in hunger and reward preprandial and 4 h postprandial after 14-20 wk on the diets. The primary outcome was rCBF in the nucleus accumbens (NAcc) at 4 h postprandial; the secondary outcome was preprandial rCBF in the hypothalamus. RESULTS: Consistent with a priori hypothesis, at 4 h postprandial, NAcc rCBF was 43% higher in adults assigned to the high- compared with low-carbohydrate diet {P[family-wise error (FWE)-corrected] < 0.05}. Preprandial hypothalamus rCBF was 41% higher on high-carbohydrate diet [P(FWE-corrected) < 0.001]. Exploratory analyses revealed that elevated rCBF on high-carbohydrate diet was not specific to prandial state: preprandial NAcc rCBF [P(FWE-corrected) < 0.001] and 4 h postprandial rCBF in hypothalamus [P(FWE-corrected) < 0.001]. Insulin secretion predicted differential postprandial activation of the NAcc by diet. CONCLUSIONS: We report significant differences in rCBF in adults assigned to diets varying in carbohydrate content for several months, which appear to be partially associated with insulin secretion. These findings suggest that chronic intake of a high-carbohydrate diet may affect brain reward and homeostatic activity in ways that could impede weight-loss maintenance. This trial was registered at clinicaltrials.gov as NCT02300857.


Asunto(s)
Dieta Baja en Carbohidratos , Pérdida de Peso , Adulto , Carbohidratos de la Dieta , Ingestión de Energía , Femenino , Humanos , Hipotálamo , Masculino , Recompensa
8.
Brain Behav Immun ; 90: 346-352, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32919039

RESUMEN

Maternal immune activity during pregnancy has been associated with risk for psychiatric disorders in offspring, but less is known about its implications for children's emotional and behavioral development. This study examined whether concentrations of five cytokines assayed from prenatal serum were associated with socioeconomic status (SES) and racial disparities in their offspring's self-regulation abilities. Participants included 1628 women in the Collaborative Perinatal Project (CPP). Seven behavioral items conceptually related to self-regulation were rated by CPP psychologists when children were 4 years old. Concentrations of interleukin (IL)-1ß, IL-6, IL-8, tumor necrosis factor (TNF)-α, and IL-10 were assessed. Covariates included child sex and mother's age, psychiatric disorders, and medical conditions during pregnancy. There were significant SES differences in child self-regulation, with higher SES children scoring higher on self-regulation (ß = 0.18, 95% CI [0.11, 0.25]), but no racial differences. The concentration of IL-8 in maternal serum was associated with higher child self-regulation, ß = 0.09, 95% CI [0.02, 0.16]. In mediation analyses, variation in maternal IL-8 contributed to the association between family SES and child self-regulation (ß = 0.02, 95% CI [0.003, 0.030]), explaining about one-tenth of the SES disparities. This study suggests pregnancy as an early sensitive period and maternal immune activity as an important context for child development.


Asunto(s)
Trastornos Mentales , Efectos Tardíos de la Exposición Prenatal , Autocontrol , Niño , Desarrollo Infantil , Preescolar , Citocinas , Femenino , Humanos , Embarazo , Factor de Necrosis Tumoral alfa
9.
Proc Natl Acad Sci U S A ; 114(26): 6728-6733, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28607066

RESUMEN

Children raised in economically disadvantaged households face increased risks of poor health in adulthood, suggesting that inequalities in health have early origins. From the child's perspective, exposure to economic hardship may begin as early as conception, potentially via maternal neuroendocrine-immune responses to prenatal stressors, which adversely impact neurodevelopment. Here we investigate whether socioeconomic disadvantage is associated with gestational immune activity and whether such activity is associated with abnormalities among offspring during infancy. We analyzed concentrations of five immune markers (IL-1ß, IL-6, IL-8, IL-10, and TNF-α) in maternal serum from 1,494 participants in the New England Family Study in relation to the level of maternal socioeconomic disadvantage and their involvement in offspring neurologic abnormalities at 4 mo and 1 y of age. Median concentrations of IL-8 were lower in the most disadvantaged pregnancies [-1.53 log(pg/mL); 95% CI: -1.81, -1.25]. Offspring of these pregnancies had significantly higher risk of neurologic abnormalities at 4 mo [odds ratio (OR) = 4.61; CI = 2.84, 7.48] and 1 y (OR = 2.05; CI = 1.08, 3.90). This higher risk was accounted for in part by fetal exposure to lower maternal IL-8, which also predicted higher risks of neurologic abnormalities at 4 mo (OR = 7.67; CI = 4.05, 14.49) and 1 y (OR = 2.92; CI = 1.46, 5.87). Findings support the role of maternal immune activity in fetal neurodevelopment, exacerbated in part by socioeconomic disadvantage. This finding reveals a potential pathophysiologic pathway involved in the intergenerational transmission of socioeconomic inequalities in health.


Asunto(s)
Citocinas/sangre , Exposición Materna , Trastornos del Neurodesarrollo/sangre , Efectos Tardíos de la Exposición Prenatal/sangre , Estrés Psicológico/sangre , Adulto , Femenino , Humanos , Lactante , Trastornos del Neurodesarrollo/etiología , Embarazo , Efectos Tardíos de la Exposición Prenatal/epidemiología , Factores de Riesgo , Factores Socioeconómicos , Estrés Psicológico/epidemiología
10.
Am J Physiol Heart Circ Physiol ; 317(1): H201-H212, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31125255

RESUMEN

Administration of active growth differentiation factor 11 (GDF11) to aged mice can reduce cardiac hypertrophy, and low serum levels of GDF11 measured together with the related protein, myostatin (also known as GDF8), predict future morbidity and mortality in coronary heart patients. Using mice with a loxP-flanked ("floxed") allele of Gdf11 and Myh6-driven expression of Cre recombinase to delete Gdf11 in cardiomyocytes, we tested the hypothesis that cardiac-specific Gdf11 deficiency might lead to cardiac hypertrophy in young adulthood. We observed that targeted deletion of Gdf11 in cardiomyocytes does not cause cardiac hypertrophy but rather leads to left ventricular dilation when compared with control mice carrying only the Myh6-cre or Gdf11-floxed alleles, suggesting a possible etiology for dilated cardiomyopathy. However, the mechanism underlying this finding remains unclear because of multiple confounding effects associated with the selected model. First, whole heart Gdf11 expression did not decrease in Myh6-cre; Gdf11-floxed mice, possibly because of upregulation of Gdf11 in noncardiomyocytes in the heart. Second, we observed Cre-associated toxicity, with lower body weights and increased global fibrosis, in Cre-only control male mice compared with flox-only controls, making it challenging to infer which changes in Myh6-cre;Gdf11-floxed mice were the result of Cre toxicity versus deletion of Gdf11. Third, we observed differential expression of cre mRNA in Cre-only controls compared with the cardiomyocyte-specific knockout mice, also making comparison between these two groups difficult. Thus, targeted Gdf11 deletion in cardiomyocytes may lead to left ventricular dilation without hypertrophy, but alternative animal models are necessary to understand the mechanism for these findings. NEW & NOTEWORTHY We observed that targeted deletion of growth differentiation factor 11 in cardiomyocytes does not cause cardiac hypertrophy but rather leads to left ventricular dilation compared with control mice carrying only the Myh6-cre or growth differentiation factor 11-floxed alleles. However, the mechanism underlying this finding remains unclear because of multiple confounding effects associated with the selected mouse model.


Asunto(s)
Proteínas Morfogenéticas Óseas/genética , Cardiomiopatía Dilatada/genética , Eliminación de Gen , Factores de Diferenciación de Crecimiento/genética , Integrasas/genética , Miocitos Cardíacos/metabolismo , Factores de Edad , Animales , Proteínas Morfogenéticas Óseas/deficiencia , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Cardiomiopatía Dilatada/fisiopatología , Progresión de la Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Predisposición Genética a la Enfermedad , Factores de Diferenciación de Crecimiento/deficiencia , Integrasas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/patología , Cadenas Pesadas de Miosina/genética , Fenotipo , Función Ventricular Izquierda , Remodelación Ventricular
11.
Hum Brain Mapp ; 40(4): 1221-1233, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30548738

RESUMEN

Research on age-related memory alterations traditionally targets individuals aged ≥65 years. However, recent studies emphasize the importance of early aging processes. We therefore aimed to characterize variation in brain gray matter structure in early midlife as a function of sex and menopausal status. Subjects included 94 women (33 premenopausal, 29 perimenopausal, and 32 postmenopausal) and 99 demographically comparable men from the New England Family Study. Subjects were scanned with a high-resolution T1 sequence on a 3 T whole body scanner. Sex and reproductive-dependent structural differences were evaluated using Box's M test and analysis of covariances (ANCOVAs) for gray matter volumes. Brain regions of interest included dorsolateral prefrontal cortex (DLPFC), inferior parietal lobule (iPAR), anterior cingulate cortex (ACC), hippocampus (HIPP), and parahippocampus. While we observed expected significant sex differences in volume of hippocampus with women of all groups having higher volumes than men relative to cerebrum size, we also found significant differences in the covariance matrices of perimenopausal women compared with postmenopausal women. Associations between ACC and HIPP/iPAR/DLPFC were higher in postmenopausal women and correlated with better memory performance. Findings in this study underscore the importance of sex and reproductive status in early midlife for understanding memory function with aging.


Asunto(s)
Encéfalo/anatomía & histología , Sustancia Gris/anatomía & histología , Posmenopausia , Premenopausia , Envejecimiento/fisiología , Encéfalo/fisiología , Estudios Transversales , Femenino , Sustancia Gris/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Memoria , Persona de Mediana Edad , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Caracteres Sexuales
12.
Stat Med ; 38(5): 828-843, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30375022

RESUMEN

Mediation analysis assesses the effect of study exposures on an outcome both through and around specific mediators. While mediation analysis involving multiple mediators has been addressed in recent literature, the case of multiple exposures has received little attention. With the presence of multiple exposures, we consider regularizations that allow simultaneous effect selection and estimation while stabilizing model fit and accounting for model selection uncertainty. In the framework of linear structural-equation models, we analytically show that a two-stage approach regularizing regression coefficients does not guarantee a unimodal posterior distribution and that a product-of-coefficient approach regularizing direct and indirect effects tends to penalize excessively. We propose a regularized difference-of-coefficient approach that bypasses these limitations. Using the connection between regularizations and Bayesian hierarchical models with Laplace prior, we develop an efficient Markov chain Monte Carlo algorithm for posterior estimation and inference. Through simulations, we show that the proposed approach has better empirical performances compared to some alternatives. The methodology is illustrated using data from two epidemiological studies in human reproduction.


Asunto(s)
Teorema de Bayes , Interpretación Estadística de Datos , Modelos Estadísticos , Reproducción , Factores de Edad , Algoritmos , Fumar Cigarrillos , Simulación por Computador , Contaminantes Ambientales/análisis , Contaminantes Ambientales/sangre , Femenino , Estudios de Seguimiento , Humanos , Estudios Longitudinales , Masculino , Cadenas de Markov , Método de Montecarlo , Bifenilos Policlorados/análisis , Bifenilos Policlorados/sangre , Embarazo , Factores Socioeconómicos
13.
Soc Psychiatry Psychiatr Epidemiol ; 54(3): 291-301, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30488086

RESUMEN

PURPOSE: The current study evaluates the demographic, clinical, and neurocognitive characteristics of a recruited FEP research sample, a research control group, and a FEP clinic sample that were assessed and treated within the same center and time period. METHODS: This study utilized data collected through an observational study and a retrospective chart review. Samples were ascertained in the Longitudinal Assessment and Monitoring of Clinical Status and Brain Function in Adolescents and Adults study and the Prevention and Recovery in Early Psychosis clinic. FEP clinic patients (n = 77), FEP research participants (n = 44), and age-matched controls (n = 38) were assessed using the MATRICS consensus cognitive battery and global functioning social and role scales. Between-group differences were assessed via one-way ANOVA and Chi-square analyses. RESULTS: No significant differences were observed between groups with regard to age and gender. The FEP research sample had a higher proportion of white participants, better social and role functioning, and better neurocognitive performance when compared with the FEP clinical population. The clinic sample also had more diagnostic variability and higher prevalence of substance use disorders relative to the FEP research sample. CONCLUSIONS: Researchers should be aware of how study design and recruitment practices may impact the representativeness of samples, with particular concern for equal representation of racial minorities and patients with more severe illness. Studies should be designed to minimize burden to promote a wider range of participation.


Asunto(s)
Cognición/fisiología , Trastornos Psicóticos/psicología , Adolescente , Adulto , Femenino , Humanos , Masculino , Pruebas Neuropsicológicas , Estudios Retrospectivos , Adulto Joven
14.
Cereb Cortex ; 27(5): 2857-2870, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27178194

RESUMEN

Converging preclinical and human evidence indicates that the decline in ovarian estradiol production during the menopausal transition may play a mechanistic role in the neuronal changes that occur early in the aging process. Here, we present findings from a population-based fMRI study characterizing regional and network-level differences in working memory (WM) circuitry in midlife men and women (N = 142; age range 46-53), as a function of sex and reproductive stage. Reproductive histories and hormonal evaluations were used to determine menopausal status. Participants performed a verbal WM task during fMRI scanning. Results revealed robust differences in task-evoked responses in dorsolateral prefrontal cortex and hippocampus as a function of women's reproductive stage, despite minimal variance in chronological age. Sex differences in regional activity and functional connectivity that were pronounced between men and premenopausal women were diminished for postmenopausal women. Critically, analyzing data without regard to sex or reproductive status obscured group differences in the circuit-level neural strategies associated with successful working memory performance. These findings underscore the importance of reproductive age and hormonal status, over and above chronological age, for understanding sex differences in the aging of memory circuitry. Further, these findings suggest that early changes in working memory circuitry are evident decades before the age range typically targeted in cognitive aging studies.


Asunto(s)
Hipocampo/fisiología , Memoria a Corto Plazo/fisiología , Menopausia/fisiología , Corteza Prefrontal/fisiología , Caracteres Sexuales , Aprendizaje Verbal/fisiología , Factores de Edad , Femenino , Gonadotropinas/metabolismo , Hipocampo/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Oxígeno/sangre , Corteza Prefrontal/diagnóstico por imagen , Embarazo , Esteroides/metabolismo
15.
Alzheimers Dement ; 14(9): 1171-1183, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29907423

RESUMEN

INTRODUCTION: Precision medicine methodologies and approaches have advanced our understanding of the clinical presentation, development, progression, and management of Alzheimer's disease (AD) dementia. However, sex and gender have not yet been adequately integrated into many of these approaches. METHODS: The Society for Women's Health Research Interdisciplinary Network on AD, comprised of an expert panel of scientists and clinicians, reviewed ongoing and published research related to sex and gender differences in AD. RESULTS: The current review is a result of this Network's efforts and aims to: (1) highlight the current state-of-the-science in the AD field on sex and gender differences; (2) address knowledge gaps in assessing sex and gender differences; and (3) discuss 12 priority areas that merit further research. DISCUSSION: The exclusion of sex and gender has impeded faster advancement in the detection, treatment, and care of AD across the clinical spectrum. Greater attention to these differences will improve outcomes for both sexes.


Asunto(s)
Enfermedad de Alzheimer , Identidad de Género , Caracteres Sexuales , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/terapia , Animales , Humanos
16.
J Neurosci ; 36(39): 10163-73, 2016 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-27683911

RESUMEN

UNLABELLED: Cognitive neuroscience of aging studies traditionally target participants age 65 and older. However, epidemiological surveys show that many women report increased forgetfulness earlier in the aging process, as they transition to menopause. In this population-based fMRI study, we stepped back by over a decade to characterize the changes in memory circuitry that occur in early midlife, as a function of sex and women's reproductive stage. Participants (N = 200; age range, 45-55) performed a verbal encoding task during fMRI scanning. Reproductive histories and serologic evaluations were used to determine menopausal status. Results revealed a pronounced impact of reproductive stage on task-evoked hippocampal responses, despite minimal difference in chronological age. Next, we examined the impact of sex and reproductive stage on functional connectivity across task-related brain regions. Postmenopausal women showed enhanced bilateral hippocampal connectivity relative to premenopausal and perimenopausal women. Across women, lower 17ß-estradiol concentrations were related to more pronounced alterations in hippocampal connectivity and poorer performance on a subsequent memory retrieval task, strongly implicating sex steroids in the regulation of this circuitry. Finally, subgroup analyses revealed that high-performing postmenopausal women (relative to low and middle performers) exhibited a pattern of brain activity akin to premenopausal women. Together, these findings underscore the importance of considering reproductive stage, not simply chronological age, to identify neuronal and cognitive changes that unfold in the middle decades of life. In keeping with preclinical studies, these human findings suggest that the decline in ovarian estradiol production during menopause plays a significant role in shaping memory circuitry. SIGNIFICANCE STATEMENT: Maintaining intact memory function with age is one of the greatest public health challenges of our time, and women have an increased risk for memory disorders relative to men later in life. We studied adults early in the aging process, as women transition into menopause, to identify neuronal and cognitive changes that unfold in the middle decades of life. Results demonstrate regional and network-level differences in memory encoding-related activity as a function of women's reproductive stage, independent of chronological age. Analyzing data without regard to sex or menopausal status obscured group differences in circuit-level neural strategies associated with successful memory retrieval. These findings suggest that early changes in memory circuitry are evident decades before the age range traditionally targeted by cognitive neuroscience of aging studies.


Asunto(s)
Envejecimiento/fisiología , Hipocampo/fisiología , Memoria Episódica , Menopausia/fisiología , Red Nerviosa/fisiología , Caracteres Sexuales , Femenino , Humanos , Masculino , Recuerdo Mental , Persona de Mediana Edad , Análisis y Desempeño de Tareas
17.
Hum Brain Mapp ; 37(11): 3733-3744, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27246897

RESUMEN

Negative affective stimuli elicit behavioral and neural responses which vary on a continuum from adaptive to maladaptive, yet are typically investigated in a dichotomous manner (healthy controls vs. psychiatric diagnoses). This practice may limit our ability to fully capture variance from acute responses to negative affective stimuli to psychopathology at the extreme end. To address this, we conducted a functional magnetic resonance imaging study to examine the neural responses to negative valence/high arousal and neutral valence/low arousal images as a function of dysphoric mood and sex across individuals (n = 99) who represented traditional categories of healthy controls, major depressive disorder, bipolar psychosis, and schizophrenia. Observation of negative (vs. neutral) stimuli elicited blood oxygen-level dependent responses in the following circuitry: periaqueductal gray, hypothalamus (HYPO), amygdala (AMYG), hippocampus (HIPP), orbitofrontal cortex (OFC), medial prefrontal cortex (mPFC), and greater connectivity between AMYG and mPFC. Across all subjects, severity of dysphoric mood was associated with hyperactivity of HYPO, and, among females, right (R) AMYG. Females also demonstrated inverse relationships between severity of dysphoric mood and connectivity between HYPO - R OFC, R AMYG - R OFC, and R AMYG - R HIPP. Overall, our findings demonstrated sex-dependent deficits in response to negative affective stimuli increasing as a function of dysphoric mood state. Females demonstrated greater inability to regulate arousal as mood became more dysphoric. These findings contribute to elucidating biosignatures associated with response to negative stimuli across disorders and suggest the importance of a sex-dependent lens in determining these biosignatures. Hum Brain Mapp 37:3733-3744, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Afecto/fisiología , Trastorno Bipolar/fisiopatología , Encéfalo/fisiopatología , Trastorno Depresivo Mayor/fisiopatología , Esquizofrenia/fisiopatología , Caracteres Sexuales , Adulto , Ansiedad/diagnóstico por imagen , Ansiedad/fisiopatología , Trastorno Bipolar/diagnóstico por imagen , Trastorno Bipolar/psicología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Circulación Cerebrovascular/fisiología , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/psicología , Análisis Factorial , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Oxígeno/sangre , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/fisiopatología , Trastornos Psicóticos/psicología , Esquizofrenia/diagnóstico por imagen , Psicología del Esquizofrénico
18.
Proc Natl Acad Sci U S A ; 110(3): 842-7, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23277553

RESUMEN

Cell-cell and cell-matrix adhesions play essential roles in the function of tissues. There is growing evidence for the importance of cross talk between these two adhesion types, yet little is known about the impact of these interactions on the mechanical coupling of cells to the extracellular matrix (ECM). Here, we combine experiment and theory to reveal how intercellular adhesions modulate forces transmitted to the ECM. In the absence of cadherin-based adhesions, primary mouse keratinocytes within a colony appear to act independently, with significant traction forces extending throughout the colony. In contrast, with strong cadherin-based adhesions, keratinocytes in a cohesive colony localize traction forces to the colony periphery. Through genetic or antibody-mediated loss of cadherin expression or function, we show that cadherin-based adhesions are essential for this mechanical cooperativity. A minimal physical model in which cell-cell adhesions modulate the physical cohesion between contractile cells is sufficient to recreate the spatial rearrangement of traction forces observed experimentally with varying strength of cadherin-based adhesions. This work defines the importance of cadherin-based cell-cell adhesions in coordinating mechanical activity of epithelial cells and has implications for the mechanical regulation of epithelial tissues during development, homeostasis, and disease.


Asunto(s)
Cadherinas/fisiología , Adhesión Celular/fisiología , Queratinocitos/fisiología , Animales , Fenómenos Biofísicos , Cadherinas/antagonistas & inhibidores , Cadherinas/deficiencia , Cadherinas/genética , Calcio/farmacología , Adhesión Celular/efectos de los fármacos , Células Cultivadas , Medios de Cultivo/análisis , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Uniones Intercelulares/efectos de los fármacos , Uniones Intercelulares/fisiología , Queratinocitos/efectos de los fármacos , Mecanotransducción Celular/efectos de los fármacos , Mecanotransducción Celular/fisiología , Ratones , Modelos Biológicos , ARN Interferente Pequeño/genética
19.
J Neurogenet ; 28(1-2): 53-69, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24702465

RESUMEN

Disrupted synchronized oscillatory firing of pyramidal neuronal networks in the cerebral cortex in the gamma frequency band (i.e., 30-100 Hz) mediates many of the cognitive deficits and symptoms of schizophrenia. In fact, the density of dendritic spines and the average somal area of pyramidal neurons in layer 3 of the cerebral cortex, which mediate both long-range (associational) and local (intrinsic) corticocortical connections, are decreased in subjects with this illness. To explore the molecular pathophysiology of pyramidal neuronal dysfunction, we extracted ribonucleic acid (RNA) from laser-captured pyramidal neurons from layer 3 of Brodmann's area 42 of the superior temporal gyrus (STG) from postmortem brains from schizophrenia and normal control subjects. We then profiled the messenger RNA (mRNA) expression of these neurons, using microarray technology. We identified 1331 mRNAs that were differentially expressed in schizophrenia, including genes that belong to the transforming growth factor beta (TGF-ß) and the bone morphogenetic proteins (BMPs) signaling pathways. Disturbances of these signaling mechanisms may in part contribute to the altered expression of other genes found to be differentially expressed in this study, such as those that regulate extracellular matrix (ECM), apoptosis, and cytoskeletal and synaptic plasticity. In addition, we identified 10 microRNAs (miRNAs) that were differentially expressed in schizophrenia; enrichment analysis of their predicted gene targets revealed signaling pathways and gene networks that were found by microarray to be dysregulated, raising an interesting possibility that dysfunction of pyramidal neurons in schizophrenia may in part be mediated by a concerted dysregulation of gene network functions as a result of the altered expression of a relatively small number of miRNAs. Taken together, findings of this study provide a neurobiological framework within which specific hypotheses about the molecular mechanisms of pyramidal cell dysfunction in schizophrenia can be formulated.


Asunto(s)
MicroARNs/genética , MicroARNs/metabolismo , Células Piramidales/metabolismo , Esquizofrenia/genética , Esquizofrenia/patología , Lóbulo Temporal/patología , Adulto , Anciano , Anciano de 80 o más Años , Apoptosis/genética , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Citoesqueleto/genética , Citoesqueleto/metabolismo , Citoesqueleto/patología , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Adulto Joven
20.
J Neurogenet ; 28(1-2): 70-85, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24628518

RESUMEN

Dysregulation of pyramidal cell network function by the soma- and axon-targeting inhibitory neurons that contain the calcium-binding protein parvalbumin (PV) represents a core pathophysiological feature of schizophrenia. In order to gain insight into the molecular basis of their functional impairment, we used laser capture microdissection (LCM) to isolate PV-immunolabeled neurons from layer 3 of Brodmann's area 42 of the superior temporal gyrus (STG) from postmortem schizophrenia and normal control brains. We then extracted ribonucleic acid (RNA) from these neurons and determined their messenger RNA (mRNA) expression profile using the Affymetrix platform of microarray technology. Seven hundred thirty-nine mRNA transcripts were found to be differentially expressed in PV neurons in subjects with schizophrenia, including genes associated with WNT (wingless-type), NOTCH, and PGE2 (prostaglandin E2) signaling, in addition to genes that regulate cell cycle and apoptosis. Of these 739 genes, only 89 (12%) were also differentially expressed in pyramidal neurons, as described in the accompanying paper, suggesting that the molecular pathophysiology of schizophrenia appears to be predominantly neuronal type specific. In addition, we identified 15 microRNAs (miRNAs) that were differentially expressed in schizophrenia; enrichment analysis of the predicted targets of these miRNAs included the signaling pathways found by microarray to be dysregulated in schizophrenia. Taken together, findings of this study provide a neurobiological framework within which hypotheses of the molecular mechanisms that underlie the dysfunction of PV neurons in schizophrenia can be generated and experimentally explored and, as such, may ultimately inform the conceptualization of rational targeted molecular intervention for this debilitating disorder.


Asunto(s)
Neuronas/metabolismo , Parvalbúminas/genética , Parvalbúminas/metabolismo , Esquizofrenia , Lóbulo Temporal/patología , Adulto , Anciano , Anciano de 80 o más Años , Calbindinas/metabolismo , Dinoprostona/genética , Dinoprostona/metabolismo , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Persona de Mediana Edad , Receptor Notch1/genética , Receptor Notch1/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patología , Transducción de Señal/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA