Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 34(17)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36657158

RESUMEN

In this work, we investigated the self-assembly of a lamellar block copolymer (BCP) under different wetting conditions. We explored the influence of the chemical composition of under-layers and top-coats on the thin film stability, self-assembly kinetics and BCP domain orientation. Three different chemistries were chosen for these surface affinity modifiers and their composition was tuned in order to provide either neutral wetting (i.e. an out-of-plane lamellar structure), or affine wetting conditions (i.e. an in-plane lamellar structure) with respect to a sub-10 nm PS-b-PDMSB lamellar system. Using such controlled wetting configurations, the competition between the dewetting of the BCP layer and the self-organization kinetics was explored. We also evaluated the spreading parameter of the BCP films with respect to the configurations of surface-energy modifiers and demonstrated that BCP layers are intrinsically unstable to dewetting in a neutral configuration. Finally, the dewetting mechanisms were evaluated with respect to the different wetting configurations and we clearly observed that the rigidity of the top-coat is a key factor to delay BCP film instability.

2.
ACS Appl Mater Interfaces ; 13(9): 11224-11236, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33621463

RESUMEN

The directed self-assembly (DSA) of block copolymers (BCPs) is a powerful method for the manufacture of high-resolution features. Critical issues remain to be addressed for successful implementation of DSA, such as dewetting and controlled orientation of BCP domains through physicochemical manipulations at the BCP interfaces, and the spatial positioning and registration of the BCP features. Here, we introduce novel top-coat (TC) materials designed to undergo cross-linking reactions triggered by thermal or photoactivation processes. The cross-linked TC layer with adjusted composition induces a mechanical confinement of the BCP layer, suppressing its dewetting while promoting perpendicular orientation of BCP domains. The selection of areas of interest with perpendicular features is performed directly on the patternable TC layer via a lithography step and leverages attractive integration pathways for the generation of locally controlled BCP patterns and nanostructured BCP multilayers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA