Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Ecotoxicol Environ Saf ; 189: 109991, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31780208

RESUMEN

The honey bee Apis mellifera is an important pollinator of agricultural crops and natural forests. Honey bee populations have declined over the years, as a result of diseases, pesticides, and management problems. Fungicides are the main pesticides found in pollen grains, which are the major source of protein for bees. The objective of this study was to evaluate the cytotoxic effects of the fungicide iprodione on midgut cells of adult A. mellifera workers. Bees were fed on iprodione (LD50, determined by the manufacturer) for 12 or 24 h, and the midgut was examined using light and transmission electron microscopies. The expression level of the autophagy gene atg1 was assessed in midgut digestive cells. Cells of treated bees had signs of apoptosis: cytoplasmic vacuolization, apical cell protrusions, nuclear fragmentation, and chromatin condensation. Ultrastructural analysis revealed some cells undergoing autophagy and necrosis. Expression of atg1 was similar between treated and control bees, which can be explained by the facts that digestive cells had autolysosomes, whereas ATG-1 is found in the initial phases of autophagy. Iprodione acts by inhibiting the synthesis of glutathione, leading to the generation of reactive oxygen species, which in turn can induce different types of cell death. The results indicate that iprodione must be used with caution because it has side effects on non-target organisms, such as pollinator bees.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Abejas/efectos de los fármacos , Fungicidas Industriales/toxicidad , Hidantoínas/toxicidad , Aminoimidazol Carboxamida/toxicidad , Animales , Apoptosis/efectos de los fármacos , Abejas/citología , Sistema Digestivo/citología , Sistema Digestivo/efectos de los fármacos , Plaguicidas/análisis , Polen/química
2.
Ecotoxicol Environ Saf ; 175: 148-154, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-30897413

RESUMEN

Populations of stingless bees have declined around the world and pesticides have been indicated as one of the possible causes of this decrease. Spinosad, which is synthesized from the fermentation process produced by the soil actinomycete Saccharopolyspora spinosa, is one of the most used bioinsecticides today. This study aimed to evaluate the possible effects of spinosad (formulation) on survival, general group activity and the processes of autophagy, apoptosis and oxidative stress in two organs (midgut and brain) of workers of Partamona helleri, after 24 h of oral exposure. Workers were orally exposed to different concentrations of spinosad. The concentration (8.16 × 10-3 mg a.i./mL) that led to the mortality of approximately half the number of treated bees was considered LC50 and was used in behavior, histology and immunofluorescence bioassays. The results revealed that bee survival was substantially reduced with increasing spinosad concentrations. The LC50 of the bioinsecticide compromised general group activity, caused morphological alterations in the midgut and intensified the processes of autophagy, apoptosis and oxidative stress in this organ. The brain, on the other hand, did not present significant alterations under the tested conditions. The data obtained demonstrate, therefore, that spinosad negatively affects individual survival, general group activity and the midgut epithelium of P. helleri.


Asunto(s)
Abejas/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Sistema Digestivo/efectos de los fármacos , Insecticidas/efectos adversos , Macrólidos/efectos adversos , Animales , Abejas/crecimiento & desarrollo , Encéfalo/efectos de los fármacos , Combinación de Medicamentos , Himenópteros , Dosificación Letal Mediana
3.
Ecotoxicol Environ Saf ; 167: 69-75, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30296698

RESUMEN

The selectivity of insecticides on natural enemies in pest control are an important strategy for Integrated Pest Management. However, insecticides can have side effects on non-target organisms such as natural enemies. This study evaluated the histological and cytological changes mediated by the sublethal concentration of the imidacloprid insecticide on the midgut of non-target predator Podisus nigrispinus (Heteroptera: Pentatomidae), used in the biological control of pests. Imidacloprid was toxic for P. nigrispinus with LC50 = 3.75 mg L-1 and survival of 51.8%. This sublethal concentration of imidacloprid causes histological alterations in the midgut epithelium and cytotoxic features were irregular border epithelium, cytoplasmic vacuolation, and apocrine secretions in the first 6 h after exposure with the insecticide. Apoptosis in the digestive cells occurs after 12 h of exposure in the midgut. These results suggest that imidacloprid may affect the digestive physiology of P. nigrispinus and compromise the effective predation of this insect a biological control agent. The associated use of this insecticide with the predator in pest control should be carefully evaluated.


Asunto(s)
Tracto Gastrointestinal/efectos de los fármacos , Heterópteros/efectos de los fármacos , Insecticidas/toxicidad , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Animales , Agentes de Control Biológico , Tracto Gastrointestinal/metabolismo , Heterópteros/metabolismo , Dosificación Letal Mediana , Conducta Predatoria/efectos de los fármacos , Pruebas de Toxicidad
4.
Dev Biol ; 431(2): 194-204, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28939335

RESUMEN

In insects, the hindgut is a homeostatic region of the digestive tract, divided into pylorus, ileum, and rectum, that reabsorbs water, ions, and small molecules produced during hemolymph filtration. The hindgut anatomy in bee larvae is different from that of adult workers. This study reports the morphological changes and cellular events that occur in the hindgut during the metamorphosis of the honeybee Apis mellifera. We describe the occurrence of autophagosomes and the ultrastructure of the epithelial cells and cuticle, suggesting that cuticular degradation begins in prepupae, with the cuticle being reabsorbed and recycled by autophagosomes in white- and pink-eyed pupae, followed by the deposition of new cuticle in light-brown-eyed pupae. In L5S larvae and prepupae, the hindgut undergoes cell proliferation in the anterior and posterior ends. In the pupae, the pylorus, ileum, and rectum regions are differentiated, and cell proliferation ceases in dark-brown-eyed pupae. Apoptosis occurs in the hindgut from the L5S larval to the pink-eyed pupal stage. In light-brown- and dark-brown-eyed pupae, the ileum epithelium changes from pseudostratified to simple only after the production of the basal lamina, whereas the rectal epithelium is always flattened. In black-eyed pupae, ileum epithelial cells have large vacuoles and subcuticular spaces, while in adult forager workers these cells have long invaginations in the cell apex and many mitochondria, indicating a role in the transport of compounds. Our findings show that hindgut morphogenesis is a dynamic process, with tissue remodeling and cellular events taking place for the formation of different regions of the organ, the reconstruction of a new cuticle, and the remodeling of visceral muscles.


Asunto(s)
Apoptosis , Abejas/anatomía & histología , Abejas/embriología , Sistema Digestivo/citología , Sistema Digestivo/embriología , Jerarquia Social , Integumento Común/anatomía & histología , Animales , Autofagia , Abejas/ultraestructura , Caspasa 3/metabolismo , Proliferación Celular , Sistema Digestivo/ultraestructura , Histonas/metabolismo , Larva/citología , Larva/ultraestructura , Pupa/citología , Pupa/ultraestructura
5.
Ecotoxicol Environ Saf ; 156: 1-8, 2018 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-29524778

RESUMEN

Annonaceous acetogenins (Annona squamosa Linnaeus) comprises of a series of natural products which are extracted from Annonaceae species, squamocin proved to be highly efficient among those agents. Squamocin is mostly referred as a lethal agent for midgut cells of different insects, with toxic effects when tested against larva of some insects. In present study, LC50 and LC90 of squamocin for A. gemmatalis Hübner (Lepidoptera: Noctuidae) were calculated using probit analysis. Morphological changes in midgut cells were analyzed under light, fluorescence and transmission electron microscopes when larvae were treated with LC50 and LC90 of squamocin for 24, 48 and 72 h. Results revealed that the maximum damage to midgut cells was found under LC90 where it showed digestive cells with enlarged basal labyrinth, highly vacuolated cytoplasm, damaged apical surface, cell protrusions to the gut lumen, autophagy and cell death. The midgut goblet cells showed a strong disorganization of their microvilli. Likewise, in insects treated with squamocin, mitochondria were not marked with Mitotracker fluorescent probe, suggesting some molecular damage in these organelles, which was reinforced by decrease in the respiration rate in these insects. These results demonstrate that squamocin has potential to induce enough morphological changes in midgut through epithelial cell damage in A. gemmatalis.


Asunto(s)
Furanos/toxicidad , Lactonas/toxicidad , Lepidópteros/efectos de los fármacos , Animales , Autofagia , Sistema Digestivo/anatomía & histología , Sistema Digestivo/efectos de los fármacos , Sistema Digestivo/ultraestructura , Larva/anatomía & histología , Larva/efectos de los fármacos , Larva/ultraestructura , Lepidópteros/anatomía & histología , Lepidópteros/crecimiento & desarrollo , Lepidópteros/ultraestructura
6.
Reprod Domest Anim ; 53(5): 1103-1113, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29893035

RESUMEN

The growth hormone (GH) and growth insulin-like factor-1 (IGF-1) act directly upon the regulation and growth in the different phases of preantral follicles. Thus, it is necessary to define their sequentiality until the in vitro preovulatory development. Therefore, the study aimed to assess the effects of a sequential medium containing GH and/or IGF-1 in the long-duration in vitro culture of preantral ovarian follicles. Ovarian fragments were cultivated: first half (days 1-7), second half (days 7-14) or during 14 culture days. Treatments were identified as: αMEM+; GH â†’ IGF-1; IGF-1 â†’ GH and GH + IGF-1. The culture was designed in 24-well plates, in an incubator at 37°C and 5% CO2 . The parameters of normality, viability, follicles (primordial/in developing) and follicle diameter were evaluated. In addition, the ultrastructure was confirmed with electron transmission microscopy. The results showed that the culture treated with GH â†’ IGF-1 kept the follicular normality and the viability until the 14th day of culture and increased both in the follicular development until 7th day and in the follicular diameter until 14th day, when compared to the control. The treatments IGF-1 â†’ GH and GH + IGF-1 were not effective in the developing and follicular diameter after 7 days of culture, and also reduced the percentage of viability. It is concluded that the bovine preantral follicles cultured in the sequential medium treated with GH â†’ IGF-1 improved the follicular development until the first half of the culture and kept these parameters with normality, viability and ultrastructure until the second half of the in vitro culture.


Asunto(s)
Hormona del Crecimiento/farmacología , Factor I del Crecimiento Similar a la Insulina/farmacología , Oocitos/fisiología , Folículo Ovárico/fisiología , Animales , Bovinos , Femenino , Oocitos/efectos de los fármacos , Folículo Ovárico/efectos de los fármacos , Técnicas de Cultivo de Tejidos/veterinaria
7.
Microsc Microanal ; 20(1): 285-95, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24188829

RESUMEN

Bumblebees need to keep bodily homeostasis and for that have an efficient system of excretion formed by the Malpighian tubules, ileum, and rectum. We analyzed the excretory organs of Bombus morio, a bee without rectal pads. In addition, we analyzed the rectal epithelium of Melipona quadrifasciata anthidioides which has rectal pads. The Malpighian tubules exhibited two cell types and the ileum four types. However, comparative analysis of the rectum showed that only cells of the anterior region of the rectal epithelium of B. morio are structurally distinct. We suggest that cells of the Malpighian tubules of B. morio have an excretory feature and that cells of ileum have different functions, such as ion absorption and water, organic compound, and protein secretion. In addition, only the anterior region of the rectum of B. morio showed characteristic absorption. We suggest that Malpighian tubules participate in the excretion of solutes and that the ileum and rectal epithelium are responsible for homeostasis of water and solutes, compensating for the absence of rectal papillae. These results contribute to our understanding of the morphophysiology of the excretory organs of bees without rectal pads.


Asunto(s)
Abejas/ultraestructura , Túbulos de Malpighi/ultraestructura , Recto/ultraestructura , Animales , Íleon/ultraestructura , Microscopía Electrónica
8.
Microsc Res Tech ; 82(6): 941-948, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30901503

RESUMEN

The ant Paraponera clavata (Fabricius, 1775) is the only extant species of Paraponerinae and is widely distributed in Brazilian forests. Aspects of its biology are documented extensively in the literature; however, knowledge of P. clavata internal morphology, specifically of exocrine glands, is restricted to the venom apparatus. The objective of this study was to describe the mandibular gland morphology of P. clavata workers. The mandibular gland is composed of a reservoir connected to a cluster of Type III secretory cells with cytoplasm rich in mitochondria and lipid droplets, similar to that of other ants. Notably, the glandular secretion is rich in protein and has a solid aspect. This is the first morphological description of the mandibular gland of P. clavata. RESEARCH HIGHLIGHTS: This study presents the morphological description of the mandibular gland of Paraponera clavata (Hymenoptera: Paraponerinae). Singular characteristics of the gland are described: the glandular secretion is rich in protein and has a solid aspect.


Asunto(s)
Hormigas/anatomía & histología , Glándulas Salivales/anatomía & histología , Animales , Hormigas/citología , Hormigas/ultraestructura , Brasil , Histocitoquímica , Microscopía , Microscopía Electrónica de Transmisión
9.
Arthropod Struct Dev ; 53: 100885, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31614307

RESUMEN

The permeability of the peritrophic matrix, essential for its function, depends on its chemical composition. The objective was to determine if the permeability of the peritrophic matrix varies along the midgut and in the presence of anti-peritrophin-55 antibody in Melipona quadrifasciata and Apis mellifera bees. The thickness of the peritrophic matrix in both species varies between the anterior and posterior midgut regions in workers. In A. mellifera dextran molecules with 40 kDa cross the peritrophic matrix, whereas those ≥70 kDa are retained in the endoperitrophic space. In M. quadrifasciata the peritrophic matrix permeability was for molecules <40 kDa. Bees fed on anti-peritrophin-55 antibody showed an increase in peritrophic matrix permeability, but survival was not affected. In the bees studied, the peritrophic matrices have morphological differences between midgut regions, but there is no difference in their permeability along the midgut, which is affected by peritrophin 55.


Asunto(s)
Abejas/fisiología , Proteínas de Insectos/metabolismo , Glicoproteínas de Membrana/metabolismo , Animales , Fenómenos Fisiológicos del Sistema Digestivo , Inmunohistoquímica , Permeabilidad , Especificidad de la Especie
10.
PeerJ ; 7: e7489, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31534837

RESUMEN

Juvenile hormone analogs (JHA) are known to interfere with growth and biosynthesis of insects with potential for insecticide action. However, there has been comparatively few data on morphological effects of JHA on insect organs. To determine pyriproxyfen effects on Aedes aegypti larvae, we conducted toxicity, behavioral bioassays and assessed ultrastructural effects of pyriproxyfen on midgut cells. A. aegypti larvae were exposed in aqueous solution of pyriproxyfen LC50 concentrations and evaluated for 24 h. This study fulfilled the toxic prevalence of pyriproxyfen to A. aegypti larvae (LC50 = 8.2 mg L-1). Behavioral observations confirmed that pyriproxyfen treatment significantly changes swimming behavior of larvae, limiting its displacement and speed. The pyriproxyfen causes remarkable histopathological and cytotoxic alterations in the midgut of larvae. Histopathological study reveals presence of cytoplasmic vacuolization and damage to brush border of the digestive cells. The main salient lesions of cytotoxic effects are occurrence of cell debris released into the midgut lumen, cytoplasm rich in lipid droplets, autophagosomes, disorganized microvilli and deformed mitochondria. Data suggest that pyriproxyfen can be used to help to control and eradicate this insect vector.

11.
Chemosphere ; 221: 464-470, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30654260

RESUMEN

The mosquito Aedes aegypti is the main vector of Dengue, Chikungunya, Zika, and yellow fever viruses, which are responsible for high human morbidity and mortality. The fight against these pathogens is mainly based on the control of the insect vector with the use of insecticides. Among insecticides, spinosad bioinsecticide is efficient against A. aegypti larvae and may be an alternative for vector control. Here, we investigate the sublethal effects of spinosad during midgut metamorphosis of A. aegypti females and its cumulative effects on blood acquisition capacity and fecundity in adults. We studied the midgut because it is an important model organ directly related to blood acquisition and digestion. Treatment of larvae with spinosad induced oxidative stress, apoptosis, and damage to the midgut cells at all stages of development and in adults. There was a reduction in the number of proliferating cells and the number of enteroendocrine cells in treated individuals. In addition, damage caused by spinosad led to a reduction in oviposition and egg viability of A. aegypti females. Finally, the exposure of mosquito larvae to sublethal concentrations of spinosad interfered with the development of the midgut, arresting the blood digestion and reproduction of adult females with blood digestion and reproduction difficulties.


Asunto(s)
Aedes/efectos de los fármacos , Insecticidas , Larva/efectos de los fármacos , Macrólidos/farmacología , Animales , Combinación de Medicamentos , Femenino , Fertilidad/efectos de los fármacos , Humanos , Insecticidas/farmacología , Mosquitos Vectores , Virosis/prevención & control
12.
Chemosphere ; 212: 337-345, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30145425

RESUMEN

The velvetbean caterpillar, Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae), is an important soybean pest in the Americas. Tebufenozide, a novel nonsteroidal ecdysone agonist is used to control this pest. Bioassays were conducted to assess tebufenozide toxicity and their ultrastructural effects on midgut of A. gemmatalis. The toxicity, survivorship, behavior response, and respiration rate for A. gemmatalis larvae after exposure to tebufenozide were evaluated. Also, A. gemmatalis larvae were treated with LC50 obtained from tebufenozide and changes were observed on their midgut cells after 24, 48 and 96 h. Tebufenozide was toxic to A. gemmatalis (LC50 = 3.86 mg mL-1 and LC90 = 12.16 mg mL-1) and survivorship was 95% for adults that had not been exposed to tebufenozide, decreasing to 52% with LC50 and 27% with LC90 estimated value. Damage to midgut cells was increased with exposure time. These cells show damaged striated border with release of protrusions to the midgut lumen, damaged nuclear membrane and nucleus with condensed chromatin and increase in amount of autophagic vacuoles. Mitochondria were modified into nanotunnels which might be an evidence that tebufenozide induces damage to cells, resulting in cell death, proved by immunofluorescence analyses. This insecticide also caused paralysis movement with change in homeostasis and compromised larval respiration. Thus, sublethal exposure to tebufenozide is sufficient to disturb the ultrastructure of A. gemmatalis midgut, which might compromise insect fitness, confirming tebufenozide a possible controlling insecticide.


Asunto(s)
Ecotoxicología , Hidrazinas/toxicidad , Larva/efectos de los fármacos , Lepidópteros/efectos de los fármacos , Animales , Insecticidas/toxicidad
13.
Protoplasma ; 255(2): 585-599, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28988368

RESUMEN

The honeybee Apis mellifera has ecological and economic importance; however, it experiences a population decline, perhaps due to exposure to toxic compounds, which are excreted by Malpighian tubules. During metamorphosis of A. mellifera, the Malpighian tubules degenerate and are formed de novo. The objective of this work was to verify the cellular events of the Malpighian tubule renewal in the metamorphosis, which are the gradual steps of cell remodeling, determining different cell types and their roles in the excretory activity in A. mellifera. Immunofluorescence and ultrastructural analyses showed that the cells of the larval Malpighian tubules degenerate by apoptosis and autophagy, and the new Malpighian tubules are formed by cell proliferation. The ultrastructure of the cells in the Malpighian tubules suggest that cellular remodeling only occurs from dark-brown-eyed pupae, indicating the onset of excretion activity in pupal Malpighian tubules. In adult forager workers, two cell types occur in the Malpighian tubules, one with ultrastructural features (abundance of mitochondria, vacuoles, microvilli, and narrow basal labyrinth) for primary urine production and another cell type with dilated basal labyrinth, long microvilli, and absence of spherocrystals, which suggest a role in primary urine re-absorpotion. This study suggests that during the metamorphosis, Malpighian tubules are non-functional until the light-brown-eyed pupae, indicating that A. mellifera may be more vulnerable to toxic compounds at early pupal stages. In addition, cell ultrastructure suggests that the Malpighian tubules may be functional from dark-brown-eyed pupae and acquire greater complexity in the forager worker bee.


Asunto(s)
Apoptosis , Abejas/citología , Abejas/embriología , Desarrollo Embrionario , Jerarquia Social , Túbulos de Malpighi/citología , Túbulos de Malpighi/embriología , Animales , Abejas/ultraestructura , Proliferación Celular , Larva/citología , Túbulos de Malpighi/ultraestructura , Pupa/citología
14.
Protoplasma ; 255(6): 1703-1712, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29756169

RESUMEN

Vitellogenin receptor (VgR) is a low-density lipoprotein receptor responsible for the mediated endocytosis of vitellogenin (Vg) during egg formation in insects. The maturing oocyte is enveloped by a follicular epithelium, which has large intercellular spaces during Vg accumulation (patency). However, Vg has been reported in the cytoplasm of follicular cells, indicating that there may be a transcellular route for its transport. This study verified the presence of VgR in the follicular cells of the ovaries of the honeybee Apis mellifera and the wasp Polistes simillimus in order to evaluate if Vg is transported via transcytosis in these insects. Antibodies specific for vitellogenin receptor (anti-VgR), vitellogenin (anti-Vg), and clathrin (anti-Clt) were used for immunolocalization. The results showed the presence of VgR on the apical and basal plasma membranes of follicular cells of the vitellogenic follicles in both species, indicating that VgR may have been transported from the basal to the apical cell domain, followed by its release into the perivitelline space, evidenced by the presence of apical plasma membrane projections containing VgR. Co-localization proved that Vg bind to VgR and that the transport of this protein is mediated by clathrin. These data suggest that, in these social insects, Vg is transported via clathrin-mediated VgR transcytosis in follicular cells.


Asunto(s)
Abejas/citología , Folículo Ovárico/citología , Folículo Ovárico/metabolismo , Transcitosis , Vitelogeninas/metabolismo , Avispas/citología , Animales , Proteínas del Huevo/metabolismo , Femenino , Proteínas de la Membrana/metabolismo , Folículo Ovárico/ultraestructura , Receptores de Superficie Celular/metabolismo
15.
Micron ; 113: 41-47, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30007857

RESUMEN

The anterior midgut region of stingless bees is anatomically differentiated with tall and narrow cells, whereas in other social and solitary bees this anatomical gut region is lacking. The objective of the present study was to describe the histochemistry, immunohistochemistry and cytochemistry of the anterior midgut region of the stingless bee Melipona quadrifasciata in comparison with the honey bee Apis mellifera. The anterior midgut region of both species was evaluated for identification of the enzymes ß- galactosidase, glucose-6-phosphatase, acid phosphatase, and alkaline phosphatase, the membrane transporter aquaporin, the hormone FMRF-amide, and lysosomes. Histology of the anterior midgut region showed that this region in M. quadrifasciata workers did not present external folds of the wall, whereas the following midgut wall presented many. In A. mellifera, folds in the midgut wall occur starting from the fore- midgut transition region. Despite these morphological differences, the tests evaluated were similar in both species. ß-galactosidase was not found in the anterior midgut cells. Glucose-6-phosphatase and acid phosphatase occurred in the apical region of the gut epithelium. Alkaline phosphatase occurred in vesicles in apical cytoplasm and in the basal plasma membrane infoldings of the epithelial cells. Aquaporin was found in the basal region of the midgut epithelium and in the associated visceral muscles. FMRF-amide was found only in nerve endings in the anterior midgut region. All cells in the anterior midgut region were rich in lysosomes. These results suggest that in both bee species, although they have anatomically different anterior midgut regions, these regions present high metabolic activity and function in cellular homeostasis, lipid absorption and are under neurohormone control.


Asunto(s)
Abejas/anatomía & histología , Tracto Gastrointestinal/anatomía & histología , Animales , Abejas/citología , Tracto Gastrointestinal/citología , Histocitoquímica , Inmunohistoquímica
16.
Chemosphere ; 212: 629-637, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30173109

RESUMEN

Insecticides used in the agriculture and forestry have side effects on non-target organisms used as natural enemies. This study evaluated the histopathology and cytotoxicity of permethrin on the midgut of the non-target predatory bug, Podisus nigrispinus (Heteroptera: Pentatomidae) used in the biological control of pest insects. The toxicity and survival of this insect were determined using six concentrations of permethrin via ingestion. Histological and ultraestutural changes of the midgut of P. nigrispinus were analyzed after exposure to permethrin. The insecticide caused toxicity in P. nigrispinus with LC50 = 0.46 µg L-1 and survival of 47% after 72 h of exposure. The histological changes in the midgut were irregularly bordered epithelium, cytoplasmic vacuolization and apocrine secretions in the lumen after 6 h following exposure to the insecticide. Cytotoxic effects such as granules and vacuoles secreted into the lumen, presence of autophagosomes, and dilatation of infolds of the basal plasma membrane were observed in the three regions of the midgut. Cells of the midgut in apoptosis occurred after 12 h of exposure. Permethrin causes toxic effects, inhibits survival, and produces changes in the histology and cytology of the midgut in P. nigrispinus, suggesting that the cell stress induced by this insecticide can disrupt physiological processes such as digestion, compromising the potential of the predator as a biological control agent of pests. The low selectivity of permethrin to a non-target organism such as the predatory bug, P. nigrispinus indicates that the associated use of this insecticide in biological control should be better evaluated.


Asunto(s)
Sistema Digestivo/efectos de los fármacos , Permetrina/química , Animales , Heterópteros
17.
Pest Manag Sci ; 74(6): 1311-1318, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29194936

RESUMEN

BACKGROUND: The global decline in Apis mellifera colonies is attributed to multiple factors, including pesticides. The bioinsecticide spinosad was initially recognized as safe for non-target organisms; however, its toxicity has been changing this view. Here, we investigated the survival, behavioral changes, and structural changes in the midgut and Malpighian tubules of A. mellifera treated orally with a spinosad formulation. RESULTS: The field-recommended concentration of spinosad killed 100% of the bees. The 5% and 50% lethal concentrations (LC5 and LC50 , respectively) of spinosad altered the behavioral activity, reducing the walking distance and velocity, and increased the resting time in comparison to the control. The LC50 caused disorganization of the epithelia of tested organs and induced oxidative stress and cell death. CONCLUSIONS: The present work provides new insights into the debate about the role of bioinsecticides in the mortality of Africanized honey bees. Even at very low concentrations, the spinosad formulation was toxic to the vital organs midgut and Malpighian tubules and adversely affected walking behavior. This detailed evaluation of the impact of the bioinsecticide on A. mellifera will contribute to the clarification of disturbances probably caused by spinosad formulations, which can be used to develop more sustainable protocols in agriculture. © 2017 Society of Chemical Industry.


Asunto(s)
Abejas/efectos de los fármacos , Insecticidas/toxicidad , Macrólidos/toxicidad , Túbulos de Malpighi/efectos de los fármacos , Animales , Abejas/fisiología , Sistema Digestivo/efectos de los fármacos , Combinación de Medicamentos , Caminata
18.
Micron ; 102: 35-43, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28869875

RESUMEN

The blood-feeding behavior of Desmodus rotundus made this bat a potential vector of rabies virus and a public health issue. Consequently, the better understanding of its reproductive biology becomes valuable for the development of methods to control its population. In this study, we described morphological aspects of epithelial cells in D. rotundus' epididymis using light and transmission electron microscopy methods. The duct compartment was the main component of initial segment (83%), caput (90%), corpus (88%) and cauda (80%) regions. The epithelium lining the duct presented a progressive decrease in its height from initial segment to cauda regions. Moreover, the morphology of each cell type was the same along the entire duct. Similarly to rodents, columnar-shaped principal cells were the most abundant cell type throughout the epididymis, followed by basal and clear cells. Differently in rat and mice, the frequency of clear cells did not increase in the epididymis cauda, whereas the proportion of principal and basal cells was greater in this region. Furthermore, D. rotundus presented goblet-shaped clear cells with the nucleus located in the apical portion of the epididymal epithelium. This cellular portion also presented electron-lucid vesicles of different sizes that may correspond to vesicles enriched with proteins related to proton secretion. In addition to the findings regarding clear cells' structural organization, basal cells presented scarce cytoplasm and no axiopodia. Taken these findings together, we suggest that the mechanism of luminal acidification may have other pathways in D. rotundus than those described in rodents.


Asunto(s)
Quirópteros/anatomía & histología , Epidídimo/ultraestructura , Células Epiteliales/ultraestructura , Epitelio/ultraestructura , Animales , Brasil , Epidídimo/anatomía & histología , Células Epiteliales/fisiología , Masculino , Microscopía Electrónica de Transmisión , Testículo/fisiología
19.
Microsc Res Tech ; 78(7): 603-12, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25951610

RESUMEN

Intramandibular glands have been poorly studied in polymorphic ants, where the differences between castes were unsufficiently scrutinized. Leaf-cutting ants possess one of the most complex systems of communication and labor division, which is polymorphic well as age polyethism, and makes them an ideal model for the study of intramandibular glands. This study has investigated the occurrence of intramandibular glands in female castes and subcastes of Atta laevigata. The mandibles of the queen, medium, and minor workers, and soldiers were submitted to histological, histochemical, ultrastructural, and morphometric analyses. The class-3 gland cells and the epidermal gland with a reservoir were found in all the castes. The queens and soldiers showed a higher number of class-3 gland cells, distributed within the mandible as well as a greater gland size in comparison to the workers. The histochemical tests, periodic acid-Schiff (PAS), mercury-bromophenol, and Nile blue, were similar for the class-3 gland cells and epidermal glands with a reservoir. However, the tests evidenced differences between the castes, with carbohydrates strongly positive in all of them, whereas neutral lipids were found in the queen and soldiers. The protein was weakly positive in the queen, whereas in the soldier, medium, and minor workers these reactions were strongly positive in the intramandibular glands. Our findings in A. laevigata suggest that intramandibular glands are directly involved in labor division and consequently in chemical communication between the castes.


Asunto(s)
Hormigas/química , Hormigas/clasificación , Glándulas Exocrinas/química , Animales , Hormigas/anatomía & histología , Hormigas/metabolismo , Glándulas Exocrinas/anatomía & histología , Glándulas Exocrinas/metabolismo , Femenino , Histología Comparada , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo
20.
C R Biol ; 337(6): 365-72, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24961556

RESUMEN

Bumblebees are widely distributed across the world and have great economic and ecological importance as pollinators in the forest as well as in agriculture. The insect midgut consists of three cell types, which play various important roles in digestion, absorption, and hormone production. The present study characterized the anterior and posterior midgut regions of the bumblebee, Bombus morio. The digestive, regenerative and endocrine cells in the midgut showed regional differences in their number, nuclear size, as well as the size of the striated border. Ultrastructurally, the digestive cells contained many mitochondria and long microvilli; however, in the anterior midgut region, these cells showed dilated basal labyrinths with a few openings for the hemocoel, whereas the labyrinths of the basal posterior region remained inverse characteristics. Thus, the characterization of the midgut of B. morio supported an ecto-endoperitrophic circulation, contributing to a better understanding of the digestive process in this bee.


Asunto(s)
Abejas/ultraestructura , Sistema Digestivo/ultraestructura , Animales , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Sistema Digestivo/citología , Células Epiteliales/ultraestructura , FMRFamida/metabolismo , Técnica del Anticuerpo Fluorescente , Microscopía Electrónica de Transmisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA