Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(26): e2308318, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38258396

RESUMEN

In nature, many organisms are capable of self-organizing into collective groups through local communications to perform complex tasks that individuals cannot complete. To date, the reported artificial microswarms either rely on toxic chemical reactions for communication or lack the hierarchical controllability and functionality, which is unfavorable for practical applications. To this end, this exploits the ion-exchange reaction enabled hierarchical swarm composed of cationic ion exchange resin and magnetic microspheres of internal information exchange. The swarm is reconfigurable under magnetic fields, generating ordered structures of controllable mobilities and even reversed hierarchy, able to navigate in confined and complex environments. Moreover, the swarm shows interesting communications among each other, such as merging, splitting, and member exchange, forming multi-leader groups, living crystals, and complex vortices. Furthermore, the swarm functions as a dual-functional microreactor, which can load, transport, and release drugs in a pH-enhanced manner, as well as effectively degrade antibiotics via light-enhanced Fenton-like reaction in polluted water. The organized structure of the swarm greatly improves the drug loading/transport efficiency and the local concentration of catalysts for fast pollutant removal. This design lays the foundation for the design of dual-functional micro/nanorobots for intelligent drug delivery and advanced environmental remediation.

2.
Small ; : e2306798, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38059804

RESUMEN

Swimming microrobots that are actuated by multiple stimuli/fields display various intriguing collective behaviors, ranging from phase separation to clustering and giant number fluctuation; however, it is still chanllenging to achieve multiple responses and functionalities within one colloidal system to emulate high environmental adaptability and improved tasking capability of natural swarms. In this work, a weak ion-exchange based swarm is presented that can self-organize and reconfigure by chemical, light, and magnetic fields, showing living crystal, amorphous glass, liquid, chain, and wheel-like structures. By changing the frequency and strength of the rotating magnetic field, various well-controlled and fast transformations are obtained. Experiments show the high adaptability and functionality of the microrobot swarm in delivering drugs in confined spaces, such as narrow channels with turns or obstacles. The drug-carrying swarm exhibits excellent chemtherapy for Hela and CT26 cells due to the pH-enhanced drug release and locomotion. This reconfigurable microswarm provides a new platform for biomedical and environmental applications.

3.
Inflamm Res ; 72(10-11): 2053-2072, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37816881

RESUMEN

OBJECTIVE: Nanoparticles (NPs) hold a great promise in combating rheumatoid arthritis, but are often compromised by their toxicities because the currently used NPs are usually synthesized by chemical methods. Our group has previously fabricated Ångstrom-scale silver particles (AgÅPs) and demonstrated the anti-tumor and anti-sepsis efficacy of fructose-coated AgÅPs (F-AgÅPs). This study aimed to uncover the efficacy and mechanisms of F-AgÅPs for arthritis therapy. METHODS: We evaluated the efficacy of F-AgÅPs in collagen-induced arthritis (CIA) mice. We also compared the capacities of F-AgÅPs, the commercial AgNPs, and the clinical drug methotrexate (MTX) in protecting against K/BxN serum-transfer arthritis (STA) mice. Moreover, we evaluated the effects of F-AgÅPs and AgNPs on inflammation, osteoclast formation, synoviocytes migration, and matrix metalloproteinases (MMPs) production in vitro and in vivo. Meanwhile, the toxicities of F-AgÅPs and AgNPs in vitro and in vivo were also tested. RESULTS: F-AgÅPs significantly prevented bone erosion, synovitis, and cartilage damage, attenuated rheumatic pain, and improved the impaired motor function in mouse models of CIA or STA, the anti-rheumatic effects of which were comparable or stronger than AgNPs and MTX. Further studies revealed that F-AgÅPs exhibited similar or greater inhibitory abilities than AgNPs to suppress inflammation, osteoclast formation, synoviocytes migration, and MMPs production. No obvious toxicities were observed in vitro and in vivo after F-AgÅPs treatment. CONCLUSIONS: F-AgÅPs can effectively alleviate arthritis without notable toxicities and their anti-arthritic effects are associated with the inhibition of inflammation, osteoclastogenesis, synoviocytes migration, and MMPs production. Our study suggests the prospect of F-AgÅPs as an efficient and low-toxicity agent for arthritis therapy.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Ratones , Animales , Plata/uso terapéutico , Osteogénesis , Inflamación/tratamiento farmacológico , Inflamación/patología , Artritis Reumatoide/tratamiento farmacológico , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Colágeno , Metotrexato/farmacología , Metotrexato/uso terapéutico , Metaloproteinasas de la Matriz
4.
Environ Sci Technol ; 57(9): 4039-4049, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36808991

RESUMEN

Nitric oxide (NO) is an atmospheric pollutant and climate forcer as well as a key intermediary in the marine nitrogen cycle, but the ocean's NO contribution and production mechanisms remain unclear. Here, high-resolution NO observations were conducted simultaneously in the surface ocean and the lower atmosphere of the Yellow Sea and the East China Sea; moreover, NO production from photolysis and microbial processes was analyzed. The NO sea-air exchange showed uneven distributions (RSD = 349.1%) with an average flux of 5.3 ± 18.5 × 10-17 mol cm-2 s-1. In coastal waters where nitrite photolysis was the predominant source (89.0%), NO concentrations were remarkably higher (84.7%) than the overall average of the study area. The NO from archaeal nitrification accounted for 52.8% of all microbial production (11.0%). We also examined the relationship between gaseous NO and ozone which helped identify sources of atmospheric NO. The sea-to-air flux of NO in coastal waters was narrowed by contaminated air with elevated NO concentrations. These findings indicate that the emissions of NO from coastal waters, mainly controlled by reactive nitrogen inputs, will increase with the reduced terrestrial NO discharge.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Agua de Mar , Óxido Nítrico , Contaminantes Atmosféricos/análisis , Océanos y Mares , China , Monitoreo del Ambiente
5.
Environ Res ; 238(Pt 1): 117110, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37696322

RESUMEN

Understanding the control mechanisms of carbon dioxide (CO2) emissions in intertidal wetland sediments is beneficial for the concern of global carbon biogeochemistry and climate change. Nevertheless, multiple controls on CO2 emissions from intertidal wetland sediments to the atmosphere still need to be clarified. This study investigated the effect of tidal action on CO2 emissions from salt marsh sediments covered by Spartina alterniflora in the Jiaozhou Bay wetland using the static chamber method combined with an infrared CO2 detector. The results showed that the CO2 emission fluxes from the sediment during ebb tides were higher than those during flood tides. The whole wetland sediment acted as a weak source of atmospheric CO2 (average flux: 24.44 ± 16.80 mg C m-2 h-1) compared to terrestrial soils and was affected by the cycle of seawater inundation and exposure. The tidal influence on vertical dissolved inorganic carbon (DIC) transport in the sediment was also quantitated using a two-end member mixing model. The surface sediment layer (5-15 cm) with maximum DIC concentration during ebb tides became the one with minimum DIC concentration during flood tides, indicating the DIC transport from the surface sediment to seawater. Furthermore, aerobic respiration by microorganisms was the primary process of CO2 production in the sediment according to 16 S rDNA sequencing analysis. This study revealed the strong impact of tidal action on CO2 emissions from the wetland sediment and provided insights into the source-sink pattern of CO2 and DIC at the land-ocean interface.


Asunto(s)
Dióxido de Carbono , Humedales , Dióxido de Carbono/análisis , Metano/análisis , Agua de Mar , Suelo/química
6.
Small ; 18(17): e2200175, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35307967

RESUMEN

Solar evaporation is one of the most attractive and sustainable approaches to address worldwide freshwater scarcity. Unfortunately, it is still a crucial challenge that needs to be confronted when the solar evaporator faces harsh application environments. Herein, a promising polymer molding method that combines melt blending and compression molding, namely micro extrusion compression molding, is proposed for the cost-effective fabrication of lightweight polyethylene/graphene nanosheets (PE/GNs) foam with interconnected vapor escape channels and surface micro-nanostructures. A contact angle of 155 ± 2°, a rolling angle of 5 ± 1° and reflectance of ≈1.6% in the wavelength range of 300-2500 nm appears on the micro-nanostructured PE/GNs foam surface. More interestingly, the micro-nanostructured PE/GNs foam surface can maintain a robust superhydrophobic state under dynamic impacting, high temperature and acid-/alkali solutions. These results mean that the micro-nanostructured PE/GNs foam surface possesses self-cleaning, anti-icing and photothermal deicing properties at the same time. Importantly, the foam exhibits an evaporation rate of 1.83 kg m-2 h-1 under 1 Sun illumination and excellent salt rejecting performance when it is used as a self-floating solar evaporator. The proposed method provides an ideal and industrialized approach for the mass production of solar evaporators suitable for practical application environments.


Asunto(s)
Grafito , Nanoestructuras , Purificación del Agua , Álcalis , Análisis Costo-Beneficio , Interacciones Hidrofóbicas e Hidrofílicas , Pinzas Ópticas , Polietileno
7.
Macromol Rapid Commun ; 43(18): e2200043, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35279035

RESUMEN

Upcycling waste plastics into advanced semiconductor photocatalysts provides a new strategy to reasonably and economically solve the huge amount of waste plastics, which remains challenging. Herein, a carbon nitride-based donor-acceptor (D-A) conjugated copolymer by copolymerization of dicyandiamide and terephthalic acid from discarded polyethylene terephthalate (PET) using Zn(OH)2 as catalyst and template at 360-440 °C is synthesized. The morphology and structure of the conjugated copolymer are well regulated by the calcination temperature. The resultant conjugated copolymer exhibits merits of high light absorption and low electron-hole recombination probability. Consequently, it works excellently in the persulfate-based advanced oxidation process for visible light-driven photocatalytic degradation of tetracycline. The kinetic constant (3.4 × 10-2  min-1 ) is 40.5 and 2.3 times that of the conjugated copolymer system and persulfate system, respectively. Furthermore, the reactive species (including •OH, SO4 •- , •O2 - , 1 O2 , and h+ ) and degradation intermediates of tetracycline are analyzed to expound its degradation process. This work not only pioneers design guidelines on upcycling of waste plastics in a sustainable manner, but also provides a facile strategy to synthesize carbon nitride-based D-A conjugated copolymers for the efficient activation of persulfate-based advanced oxidation process in wastewater treatment.


Asunto(s)
Tereftalatos Polietilenos , Tetraciclina , Antibacterianos , Catálisis , Nitrilos/química , Plásticos , Polímeros/química
8.
Macromol Rapid Commun ; 43(18): e2100835, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35032138

RESUMEN

Upcycling waste plastics (e.g., polyethylene (PE)) into value-added carbon products is regarded as a promising approach to address the increasingly serious waste plastic pollution and simultaneously achieve carbon neutrality. However, developing new carbonization technology routes to promote the oxidation of PE at low temperature and construct the stable cross-linking network remains challenging. Here, a facile carbon-grown-on-carbon strategy is proposed using carbon black (CB) to convert waste PE into core/shell carbon nanoparticles (CN) in high yields at low temperature. The yield of CN remarkably increases when the heating temperature decreases or the dosage of CB increases. The obtained CN displays turbostratic structure and closely aggregated granular morphology with a size of ≈80 nm. It is found that, prior to the oxidation and carbonization of PE, CB forms a 3D network architecture in the PE matrix. More importantly, CB not only catalyzes the partial oxidation of PE to form PE macromolecular radicals and introduce oxygen-containing groups at low temperature in the early stage, but also favors for the construction of a stable cross-linking network in the latter stage. This work offers a facile sustainable strategy for chemical upcycling of PE into value-added carbon products without post-treatments or usage of metallic catalysts.

9.
Proc Natl Acad Sci U S A ; 116(31): 15386-15391, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31308243

RESUMEN

We report a conjugated polyelectrolyte fluorescence-based biosensor P-C-3 and a general methodology to evaluate spectral shape recognition to identify biomolecules using artificial intelligence. By using well-defined analytes, we demonstrate that the fluorescence spectral shape of P-C-3 is sensitive to minor structural changes and exhibits distinct signature patterns for different analytes. A method was also developed to select useful features to reduce computational complexity and prevent overfitting of the data. It was found that the normalized intensity of 3 to 5 selected wavelengths was sufficient for the fluorescence biosensor to classify 13 distinct nucleotides and distinguish as little as single base substitutions at distinct positions in the primary sequence of oligonucleotides rapidly with nearly 100% classification accuracy. Photophysical studies led to a model to explain the mechanism of these fluorescence spectral shape changes, which provides theoretical support for applying this method in complicated biological systems. Using the feature selection algorithm to measure the relative intensity of a few selected wavelengths significantly reduces measurement time, demonstrating the potential for fluorescence spectrum shape analysis in high-throughput and high-content screening.


Asunto(s)
Nucleótidos/química , Análisis Discriminante , Luz , Espectrometría de Fluorescencia , Factores de Tiempo
10.
Nanotechnology ; 31(3): 035402, 2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-31550696

RESUMEN

Herein, polystyrene waste was carbonized into mesoporous carbon nanosheets (CNS) using the template method. The pore structure of the obtained CNS was further tuned by KOH activation, resulting in the formation of hierarchical porous carbon sheets with a specific surface area of 2650 m2 g-1 and a pore volume of 2.43 cm3 g-1. Benefiting from these unique properties, in a three electrode system, the hierarchical porous carbon sheets displayed a specific capacitance of 323 F g-1 at 0.5 A g-1 in a 6 M KOH electrolyte, good rate capability (222 F g-1 at 20 A g-1) and cycle stability (92.6% of capacitance retention after 10 000 cycles). More importantly, an energy density of 44.1 Wh kg-1 was also displayed with a power density of 757.1 W kg-1 in an organic electrolyte. In this regard, the present strategy demonstrates a facile approach for recycling plastic waste into high value-added products, which will potentially pave the way for the treatment of plastic waste in the future.

11.
Macromol Rapid Commun ; 40(1): e1800545, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30284334

RESUMEN

The performance of lithium- and sodium-ion batteries relies notably on the accessibility to carbon electrodes of controllable porous structure and chemical composition. This work reports a facile synthesis of well-defined N-doped porous carbons (NPCs) using a poly(ionic liquid) (PIL) as precursor, and graphene oxide (GO)-stabilized poly(methyl methacrylate) (PMMA) nanoparticles as sacrificial template. The GO-stabilized PMMA nanoparticles are first prepared and then decorated by a thin PIL coating before carbonization. The resulting NPCs reach a satisfactory specific surface area of up to 561 m2 g-1 and a hierarchically meso- and macroporous structure while keeping a nitrogen content of 2.6 wt%. Such NPCs deliver a high reversible charge/discharge capacity of 1013 mA h g-1 over 200 cycles at 0.4 A g-1 for lithium-ion batteries, and show a good capacity of 204 mA h g-1 over 100 cycles at 0.1 A g-1 for sodium-ion batteries.


Asunto(s)
Carbono/química , Suministros de Energía Eléctrica , Líquidos Iónicos/química , Litio/química , Polímeros/química , Sodio/química , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
12.
Brain Inj ; 31(12): 1651-1655, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28898108

RESUMEN

BACKGROUND: A large cranial defect combined with hydrocephalus is a frequent sequela of decompressive craniectomy (DC) performed to treat malignant intracranial hypertension. Currently, many neurosurgeons perform simultaneous cranioplasty and shunt implantation on such patients, but the safety of this combined procedure remains controversial. METHODS: We retrospectively evaluated 58 patients treated via cranioplasty and shunt implantation after DC. Twenty patients underwent simultaneous procedures (simultaneous operation group) and 38 underwent staged procedures (staged operation group). We collected and analysed demographic data, information on disease histories, and clinical findings. RESULTS: The overall complication rate was 19%. The two groups did not significantly differ regarding the all-complication (30% vs. 13%), bleeding complication (0% vs. 5%), or treatment failure (15% vs. 3%) rates. However, the rate of surgical site infection/incision healing problems (25% vs. 3%) and the re-operation rate (20% vs. 3%) were significantly higher in the simultaneous operation group. CONCLUSION: Patients undergoing simultaneous cranioplasty/shunt implantation may be at a higher risk of infectious complications than those undergoing staged operations.


Asunto(s)
Craniectomía Descompresiva/métodos , Hipertensión Intracraneal/cirugía , Derivación Ventriculoperitoneal/métodos , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Resultado del Tratamiento , Derivación Ventriculoperitoneal/instrumentación
13.
Angew Chem Int Ed Engl ; 56(26): 7557-7563, 2017 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-28488398

RESUMEN

CO2 capture is a pressing global environmental issue that drives scientists to develop creative strategies for tackling this challenge. The concept in this contribution is to produce site-specific nitrogen doping in microporous carbon fibers. Following this approach a carbon/carbon heterojunction is created by using a poly(ionic liquid) (PIL) as a "soft" activation agent that deposits nitrogen species exclusively on the surface of commercial microporous carbon fibers. This type of carbon-based biphasic heterojunction amplifies the interaction between carbon fiber and CO2 molecule for unusually high CO2 uptake and resistive sensing.

14.
Soft Matter ; 11(20): 3986-93, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-25892158

RESUMEN

The melt viscosity of three-arm star polystyrene (S3PS)-Fe(3)O(4) nanoparticle composites was studied by means of rheological measurements. The arm molecular weight (M(a)) of S3PS (or radius gyration) and the particle size of Fe(3)O(4) (radius (R(p)): 3 nm and 44 nm) showed a strong influence on the melt viscosity behavior (at low shear frequencies) of S3PS-Fe(3)O(4) composites. The reinforcement (viscosity increase) was observed in the composites where the M(a) was higher than the M(c) of PS (M(c): the critical molecular weight for chain entanglement). For M(a) < M(c), when the size of Fe(3)O(4) nanoparticles was changed, the melt viscosity of the composites exhibited either plasticization (melt viscosity reduction) or reinforcement. When the content of Fe(3)O(4) was low (1 wt%), the transformation from plasticization to reinforcement behavior could be observed, which strongly depended on the size ratio of the radius of gyration (R(g)) of S3PS to the size of nanoparticles (R(p)). In addition, the magnetic properties and thermal stability of S3PS-Fe(3)O(4) composites were studied.

15.
Brain Inj ; 29(13-14): 1654-60, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26513495

RESUMEN

BACKGROUND: A large cranial defect following decompressive craniectomy (DC) is a common sequela in patients with severe traumatic brain injury (TBI). Such a defect can cause severe disturbance of cerebral blood flow (CBF) regulation. This study investigated the impact of cranioplasty on CBF in these patients. METHODS: Patients who underwent DC and secondary cranioplasty were prospectively studied for a severe TBI. CT perfusion was used to measure CBF before and after cranioplasty. The basal ganglia, parietal lobe and occipital lobe on the decompressed side were chosen as zones of interest for CBF evaluation. RESULTS: Nine patients representing nine cranioplasty procedures were included in the study. Before cranioplasty, CBF on the decompressed side was lower than that on the contralateral side. During the early stage (10 days) after cranioplasty, CBF on the decompressed side was increased and this increase was significant in the parietal and occipital lobe. CBF was also increased on the contralateral side. In addition, the difference in CBF between the contralateral side and the decompressed side was reduced after cranioplasty. Further, the CT perfusion showed that the CBFs decreased again 3 months post-cranioplasty among four cases, but was still higher than those before cranioplasty. CONCLUSIONS: This study indicates that cranioplasty may increase CBF and benefit the recovery in patients with DC for TBI.


Asunto(s)
Lesiones Encefálicas/fisiopatología , Lesiones Encefálicas/cirugía , Circulación Cerebrovascular/fisiología , Craniectomía Descompresiva/métodos , Adulto , Femenino , Escala de Consecuencias de Glasgow , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Procedimientos de Cirugía Plástica/métodos , Cráneo/cirugía , Tomografía Computarizada por Rayos X , Resultado del Tratamiento
16.
Environ Sci Technol ; 48(7): 4048-55, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24611910

RESUMEN

The catalytic carbonization of polyolefin materials to synthesize carbon nanotubes (CNTs) is a promising strategy for the processing and recycling of plastic wastes, but this approach is generally limited due to the selectivity of catalysts and the difficulties in separating the polyolefin mixture. In this study, the influence of nanosized carbon black (CB) and Ni2O3 as a novel combined catalyst system on catalyzing carbonization of polypropylene (PP), polyethylene (PE), polystyrene (PS) and their blends was investigated. We showed that this combination was efficient to promote the carbonization of these polymers to produce CNTs with high yields and of good quality. Catalytic pyrolysis and model carbonization experiments indicated that the carbonization mechanism was attributed to the synergistic effect of the combined catalysts rendered by CB and Ni2O3: CB catalyzed the degradation of PP, PE, and PS to selectively produce more aromatic compounds, which were subsequently dehydrogenated and reassembled into CNTs via the catalytic action of CB together with Ni particles. Moreover, the performance of the synthesized CNTs as the electrode of supercapacitor was investigated. The supercapacitor displayed a high specific capacitance as compared to supercapacitors using commercial CNTs and CB. This difference was attributed to the relatively larger specific surface areas of our synthetic CNTs and their more oxygen-containing groups.


Asunto(s)
Capacidad Eléctrica , Nanotubos de Carbono/química , Níquel/química , Óxidos/química , Tamaño de la Partícula , Polienos/química , Hollín/química , Residuos/análisis , Adsorción , Catálisis , Electrodos , Modelos Teóricos , Nanotubos de Carbono/ultraestructura , Polietileno/química , Poliestirenos/química , Espectrometría Raman , Temperatura , Difracción de Rayos X
17.
Phys Chem Chem Phys ; 16(45): 25071-5, 2014 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-25330186

RESUMEN

The porous carbon nanotubes were selectively prepared from the pristine carbon nanotubes. The surface of carbon nanotubes was firstly functionalized with Fe2O3 nanoparticles and subsequent heat treatment induced CNT etching. After removal of Fe2O3 nanoparticles, mesopores were formed in carbon nanotubes and thus porous structure was obtained. The obtained material of porous carbon nanotubes with higher specific surface area and larger pore sizes was tested as anode material of lithium ion batteries and showed improved performance with respect to the pristine carbon nanotubes.

18.
Mar Pollut Bull ; 200: 116095, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325205

RESUMEN

An integrated observation of NOx that included coastal cities and oceanic cruises covering the Qingdao coastal waters sites (QDCW) and the Yellow Sea and East China Sea sites (YECS) was conducted in spring. The average concentrations of the coastal cities, the QDCW, and the YECS were 5.4 ± 4.1, 4.2 ± 3.5, and 2.9 ± 6.8 ppb for NO while 18.5 ± 7.2, 9.4 ± 5.2, and 4.9 ± 6.4 ppb for NO2, depicting lowest levels in the open seas. Atmospheric NO and NO2 showed similar spatial variations over the seas, the stations where the air masses originated from land or nearshore regions showed higher levels, but the decisive influencing factors were not the same in the different study areas. The calculated NOx flux value in the YECS (-8.7 × 10-17 mol N cm-2) indicated that the sea surface was a net sink of atmospheric NOx.


Asunto(s)
Contaminantes Atmosféricos , Agua de Mar , Contaminantes Atmosféricos/análisis , Dióxido de Nitrógeno , Monitoreo del Ambiente , Océanos y Mares , Óxidos de Nitrógeno , China
19.
J Hazard Mater ; 467: 133654, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38341894

RESUMEN

Self-propelled micro/nanomotors have attracted great attention for environmental remediation, however, their use for radioactive waste detection and removal has not been addressed. Engineered micromotors that are able to combine fast detection and highly adsorptive capability are promising tools for radioactive waste management but remain challenging. Herein, we design self-propelled micromotors based on zeolite imidazolate framework (ZIF-8)-hydrogel composites via inverse emulsion polymerization and show their potential for efficient uranium detection and removal. The incorporation of magnetic ferroferric oxide nanoparticles enables the magnetic recycling and actuation of the single micromotors as well as formation of swarms of worm-like or tank-treading structure. Benefited from the enhanced motion, the micromotors show fast and high-capacity uranium adsorption (747.3 mg g-1), as well as fast uranium detection based on fluorescence quenching. DFT calculation confirms the strong binding between carboxyl groups and uranyl ions. The combination of poly(acrylic acid-co-acrylamide) with ZIF-8 greatly enhances the fluorescence of the micromotor, facilitating the high-resolution fluorescence detection. A low detection limit of 250 ppb is reached by the micromotors. Such self-propelled micromotors provide a new strategy for the design of smart materials in remediation of radioactive wastewater.

20.
Mar Environ Res ; 198: 106496, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38640691

RESUMEN

The carbonate chemistry in river-dominated marginal seas is highly heterogeneous, and there is ongoing debate regarding the definition of atmospheric CO2 source or sink. On this basis, we investigated the carbonate chemistry and air-sea CO2 fluxes in a hotspot estuarine area: the Changjiang Estuary during winter and summer. The spatial characteristics of the carbonate system were influenced by water mixing of three end-members in winter, including the Changjiang freshwater with low total alkalinity (TA) concentration, the less saline Yellow Sea Surface Water with high TA, and the saline East China Sea (ECS) offshore water with moderate TA. While in summer with increased river discharge, the carbonate system was regulated by simplified two end-member mixing between the Changjiang freshwater and the ECS offshore water. By performing the end-member mixing model on DIC variations in the river plume region, significant biological addition of DIC was found in winter with an estimation of -120 ± 113 µmol kg-1 caused by wintertime organic matter remineralization from terrestrial source. While this biological addition of DIC shifted to DIC removal due to biological production in summer supported by the increased nutrient loading from Changjiang River. The pCO2 dynamics in the river plume and the ECS offshore were both subjected to physical mixing of freshwater and seawater, whether in winter and summer. In the inner estuary without horizontal mixing, the pCO2 dynamics were mainly influenced by biological uptake in winter and temperature in summer. The inner estuary, the river plume, and the ECS offshore were sources of atmospheric CO2, with their contributions varying seasonally. The Changjiang runoff enhanced the inner estuary's role as a CO2 source in summer, while intensive biological uptake reduced the river plume's contribution.


Asunto(s)
Dióxido de Carbono , Carbonatos , Monitoreo del Ambiente , Estuarios , Ríos , Estaciones del Año , Agua de Mar , Dióxido de Carbono/análisis , Carbonatos/análisis , China , Ríos/química , Agua de Mar/química , Contaminantes Químicos del Agua/análisis , Contaminantes Atmosféricos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA