Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Physiol ; 233(11): 8711-8722, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29761850

RESUMEN

As a typical hibernator, the Daurian ground squirrel (Spermophilus dauricus) spends considerable time in a state of reduced activity with prolonged fasting. Despite this, they experience little muscle atrophy and have thus become an interesting anti-disuse muscle atrophy model. The IKKß/NF-κB signaling pathway is significant to muscle atrophy due to the protein degradation resulting from the upregulation of the E3 ubiquitin ligase MuRF1. The current study showed that the IKKß/NF-κB signaling pathway and MuRF1 maintained relatively steady mRNA and protein expression levels, with little muscle atrophy observed in the soleus (slow-twitch, SOL) or extensor digitorum longus (fast-twitch, EDL) during hibernation (HIB); however, mRNA expression significantly increased in the SOL and EDL muscle during interbout arousal (IBA), as did the MuRF1 mRNA level in the SOL and MuRF1 protein level in the EDL. Interestingly, the expressions of p50 and MuRF1 significantly increased during HIB in the gastrocnemius (mixed muscle, GAS) and showed moderate atrophy, but dramatically decreased during IBA. Elevated IKKß and p50 mRNA and protein expression in the cardiac muscle (CM) during HIB did not accompany increased MuRF1 expression or muscle wasting. Importantly, almost all increased or decreased indicators in the tested tissues recovered to pre-hibernation levels after HIB. This is the first study to report on the unexpected regulation of the IKKß/NF-κB/MuRF1 pathway with remarkable muscle plasticity in Daurian ground squirrels during hibernation. Furthermore, we found that different types of muscles exhibited different strategies to cope with prolonged hibernation-induced disuse muscle atrophy.


Asunto(s)
Quinasa I-kappa B/genética , Proteínas Musculares/genética , Músculo Esquelético/crecimiento & desarrollo , Animales , Regulación del Desarrollo de la Expresión Génica , Músculo Esquelético/metabolismo , FN-kappa B/genética , Sciuridae/genética , Sciuridae/fisiología
3.
Biol Open ; 5(1): 62-71, 2016 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-26740574

RESUMEN

Understanding the mechanisms that protect against or limit muscle atrophy in hibernators during prolonged inactivity has important implications for its treatment. We examined whether external factors influence the pathways regulating protein synthesis and degradation, leading to muscle atrophy prevention in Daurian ground squirrels (Spermophilus dauricus). We investigated the effects of 14-day hindlimb-unloading (HU) in different seasons and two-month hibernation on the soleus (SOL) muscle wet mass, muscle-to-body mass ratio, fiber cross sectional area (CSA), fiber distribution and muscle ultrastructure. We also measured changes in the protein expression and activation states of Akt, mTOR and FoxO1 and the mRNA expression of atrogin-1 and MuRF1. Compared with the control groups, autumn and winter HU significantly lowered SOL muscle wet mass and muscle-to-body mass ratio, decreased type I and II fiber CSA and induced ultrastructural anomalies. However, these measured indices were unchanged between Pre-hibernation and Hibernation groups. Furthermore, phosphorylation levels of Akt and mTOR significantly decreased, while the phosphorylation level of FoxO1 and mRNA expression of atrogin-1 and MuRF1 increased after HU. During hibernation, the phosphorylation levels of Akt and mTOR significantly decreased, but the phosphorylation level of FoxO1 and mRNA expression of atrogin-1 and MuRF1 remained unchanged. Overall, our findings suggest that disuse and seasonality may not be sufficient to initiate the innate protective mechanism that prevents SOL atrophy during prolonged periods of hibernation inactivity. The stable expression of atrogin-1 and MuRF1 may facilitate to prevent SOL atrophy via controlling ubiquitination of muscle proteins during hibernation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA