Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(18): e2322520121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38657044

RESUMEN

The S-phase checkpoint involving CHK1 is essential for fork stability in response to fork stalling. PARP1 acts as a sensor of replication stress and is required for CHK1 activation. However, it is unclear how the activity of PARP1 is regulated. Here, we found that UFMylation is required for the efficient activation of CHK1 by UFMylating PARP1 at K548 during replication stress. Inactivation of UFL1, the E3 enzyme essential for UFMylation, delayed CHK1 activation and inhibits nascent DNA degradation during replication blockage as seen in PARP1-deficient cells. An in vitro study indicated that PARP1 is UFMylated at K548, which enhances its catalytic activity. Correspondingly, a PARP1 UFMylation-deficient mutant (K548R) and pathogenic mutant (F553L) compromised CHK1 activation, the restart of stalled replication forks following replication blockage, and chromosome stability. Defective PARP1 UFMylation also resulted in excessive nascent DNA degradation at stalled replication forks. Finally, we observed that PARP1 UFMylation-deficient knock-in mice exhibited increased sensitivity to replication stress caused by anticancer treatments. Thus, we demonstrate that PARP1 UFMylation promotes CHK1 activation and replication fork stability during replication stress, thus safeguarding genome integrity.


Asunto(s)
Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Replicación del ADN , Poli(ADP-Ribosa) Polimerasa-1 , Animales , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Ratones , Humanos , Daño del ADN , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética
2.
Nucleic Acids Res ; 50(3): 1517-1530, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35048968

RESUMEN

Expression of the E3 ligase TRIM21 is increased in a broad spectrum of cancers; however, the functionally relevant molecular pathway targeted by TRIM21 overexpression remains largely unknown. Here, we show that TRIM21 directly interacts with and ubiquitinates CLASPIN, a mediator for ATR-dependent CHK1 activation. TRIM21-mediated K63-linked ubiquitination of CLASPIN counteracts the K6-linked ubiquitination of CLASPIN which is essential for its interaction with TIPIN and subsequent chromatin loading. We further show that overexpression of TRIM21, but not a TRIM21 catalytically inactive mutant, compromises CHK1 activation, leading to replication fork instability and tumorigenesis. Our findings demonstrate that TRIM21 suppresses CHK1 activation by preferentially targeting CLASPIN for K63-linked ubiquitination, providing a potential target for cancer therapy.


Asunto(s)
Replicación del ADN , Proteínas Quinasas , Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
3.
Nucleic Acids Res ; 47(8): 4124-4135, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30783677

RESUMEN

A proper DNA damage response (DDR) is essential to maintain genome integrity and prevent tumorigenesis. DNA double-strand breaks (DSBs) are the most toxic DNA lesion and their repair is orchestrated by the ATM kinase. ATM is activated via the MRE11-RAD50-NBS1 (MRN) complex along with its autophosphorylation at S1981 and acetylation at K3106. Activated ATM rapidly phosphorylates a vast number of substrates in local chromatin, providing a scaffold for the assembly of higher-order complexes that can repair damaged DNA. While reversible ubiquitination has an important role in the DSB response, modification of the newly identified ubiquitin-like protein ubiquitin-fold modifier 1 and the function of UFMylation in the DDR is largely unknown. Here, we found that MRE11 is UFMylated on K282 and this UFMylation is required for the MRN complex formation under unperturbed conditions and DSB-induced optimal ATM activation, homologous recombination-mediated repair and genome integrity. A pathogenic mutation MRE11(G285C) identified in uterine endometrioid carcinoma exhibited a similar cellular phenotype as the UFMylation-defective mutant MRE11(K282R). Taken together, MRE11 UFMylation promotes ATM activation, DSB repair and genome stability, and potentially serves as a therapeutic target.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , ADN de Neoplasias/genética , Regulación Neoplásica de la Expresión Génica , Proteína Homóloga de MRE11/genética , Procesamiento Proteico-Postraduccional , Proteínas/genética , Reparación del ADN por Recombinación , Células A549 , Acetilación , Ácido Anhídrido Hidrolasas , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , Cromatina/patología , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , ADN de Neoplasias/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Humanos , Proteína Homóloga de MRE11/antagonistas & inhibidores , Proteína Homóloga de MRE11/metabolismo , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patología , Fosforilación , Unión Proteica , Proteínas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ubiquitinación
4.
Autophagy ; 20(9): 2041-2054, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38762759

RESUMEN

Macroautophagy/autophagy is essential for the degradation and recycling of cytoplasmic materials. The initiation of this process is determined by phosphatidylinositol-3-kinase (PtdIns3K) complex, which is regulated by factor BECN1 (beclin 1). UFMylation is a novel ubiquitin-like modification that has been demonstrated to modulate several cellular activities. However, the role of UFMylation in regulating autophagy has not been fully elucidated. Here, we found that VCP/p97 is UFMylated on K109 by the E3 UFL1 (UFM1 specific ligase 1) and this modification promotes BECN1 stabilization and assembly of the PtdIns3K complex, suggesting a role for VCP/p97 UFMylation in autophagy initiation. Mechanistically, VCP/p97 UFMylation stabilizes BECN1 through ATXN3 (ataxin 3)-mediated deubiquitination. As a key component of the PtdIns3K complex, stabilized BECN1 facilitates assembly of this complex. Re-expression of VCP/p97, but not the UFMylation-defective mutant, rescued the VCP/p97 depletion-induced increase in MAP1LC3B/LC3B protein expression. We also showed that several pathogenic VCP/p97 mutations identified in a variety of neurological disorders and cancers were associated with reduced UFMylation, thus implicating VCP/p97 UFMylation as a potential therapeutic target for these diseases. Abbreviation: ATG14:autophagy related 14; Baf A1:bafilomycin A1;CMT2Y: Charcot-Marie-Toothdisease, axonal, 2Y; CYB5R3: cytochromeb5 reductase 3; DDRGK1: DDRGK domain containing 1; DMEM:Dulbecco'smodified Eagle's medium;ER:endoplasmic reticulum; FBS:fetalbovine serum;FTDALS6:frontotemporaldementia and/or amyotrophic lateral sclerosis 6; IBMPFD1:inclusion bodymyopathy with early-onset Paget disease with or withoutfrontotemporal dementia 1; LC-MS/MS:liquid chromatography tandem mass spectrometry; MAP1LC3B/LC3B:microtubule associated protein 1 light chain 3 beta; MS: massspectrometry; NPLOC4: NPL4 homolog, ubiquitin recognition factor;PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3;PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PtdIns3K:phosphatidylinositol 3-kinase; RPL26: ribosomal protein L26; RPN1:ribophorin I; SQSTM1/p62: sequestosome 1; UBA5: ubiquitin likemodifier activating enzyme 5; UFC1: ubiquitin-fold modifierconjugating enzyme 1; UFD1: ubiquitin recognition factor in ERassociated degradation 1; UFL1: UFM1 specific ligase 1; UFM1:ubiquitin fold modifier 1; UFSP2: UFM1 specific peptidase 2; UVRAG:UV radiation resistance associated; VCP/p97: valosin containingprotein; WT: wild-type.


Asunto(s)
Autofagia , Beclina-1 , Ubiquitinación , Proteína que Contiene Valosina , Autofagia/fisiología , Autofagia/genética , Humanos , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genética , Beclina-1/metabolismo , Ataxina-3/metabolismo , Ataxina-3/genética , Ubiquitina-Proteína Ligasas/metabolismo , Células HeLa , Fosfatidilinositol 3-Quinasas/metabolismo , Estabilidad Proteica , Células HEK293 , Péptidos y Proteínas de Señalización Intracelular
5.
Cancers (Basel) ; 14(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36077699

RESUMEN

Poly(ADP-ribosyl)ation (PARylation) is a covalent post-translational modification and plays a key role in the immediate response of cells to stress signals. Poly(ADP-ribose) polymerase 1 (PARP1), the founding member of the PARP superfamily, synthesizes long and branched polymers of ADP-ribose (PAR) onto acceptor proteins, thereby modulating their function and their local surrounding. PARP1 is the most prominent of the PARPs and is responsible for the production of about 90% of PAR in the cell. Therefore, PARP1 and PARylation play a pleotropic role in a wide range of cellular processes, such as DNA repair and genomic stability, cell death, chromatin remodeling, inflammatory response and gene transcription. PARP1 has DNA-binding and catalytic activities that are important for DNA repair, yet also modulate chromatin conformation and gene transcription, which can be independent of DNA damage response. PARP1 and PARylation homeostasis have also been implicated in multiple diseases, including inflammation, stroke, diabetes and cancer. Studies of the molecular action and biological function of PARP1 and PARylation provide a basis for the development of pharmaceutic strategies for clinical applications. This review focuses primarily on the role of PARP1 in the regulation of chromatin remodeling and transcriptional activation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA