RESUMEN
BACKGROUND: Macrobrachium nipponense is a freshwater prawn of economic importance in China. Its reproductive molt is crucial for seedling rearing and directly impacts the industry's economic efficiency. 20-hydroxyecdysone (20E) controls various physiological behaviors in crustaceans, among which is the initiation of molt. Previous studies have shown that 20E plays a vital role in regulating molt and oviposition in M. nipponense. However, research on the molecular mechanisms underlying the reproductive molt and role of 20E in M. nipponense is still limited. RESULTS: A total of 240.24 Gb of data was obtained from 18 tissue samples by transcriptome sequencing, with > 6 Gb of clean reads per sample. The efficiency of comparison with the reference transcriptome ranged from 87.05 to 92.48%. A total of 2532 differentially expressed genes (DEGs) were identified. Eighty-seven DEGs associated with molt or 20E were screened in the transcriptomes of the different tissues sampled in both the experimental and control groups. The reliability of the RNA sequencing data was confirmed using Quantitative Real-Time PCR. The expression levels of the eight strong candidate genes showed significant variation at the different stages of molt. CONCLUSION: This study established the first transcriptome library for the different tissues of M. nipponense in response to 20E and demonstrated the dominant role of 20E in the molting process of this species. The discovery of a large number of 20E-regulated strong candidate DEGs further confirms the extensive regulatory role of 20E and provides a foundation for the deeper understanding of its molecular regulatory mechanisms.
Asunto(s)
Palaemonidae , Transcriptoma , Femenino , Animales , Ecdisterona/farmacología , Palaemonidae/genética , Reproducibilidad de los Resultados , Perfilación de la Expresión GénicaRESUMEN
Lung cancer is a malignant tumor with high mortality and drug resistance. Therefore, it is urgent to explore natural and nontoxic drugs to treat lung cancer. In this study, the natural active ingredient AANL extracted from Agrocybe aegirita was used to modify nanoselenium by an oxidation-reduction method. Transmission electron microscope detection and infrared spectroscopy showed that a novel selenium nanocomposite named AANL-SeNPs was successfully prepared. The results of nanoscale characterization showed that AANL-SeNPs had good stability and uniform dispersion in aqueous solution by zeta potential and spectrum analysis. At the cellular level, we found that AANL-SeNPs significantly inhibited the cell viability of lung cancer cells, and the cell inhibition rate of 60 nM AANL-SeNPs was 39 % in H157 cells, 67 % in H147 cells, and 62 % in A549 cells. The IC50 value of AANL-SeNPs was 51.85 nM in A549 cells and 81.57 nM in H157 cells. Moreover, AANL-SeNPs could inhibit the cell proliferation and migration, and enhance the sensitivity of lung cancer cells to osimertinib and has no toxic to normal cells. In vivo, AANL-SeNPs significantly slowed tumor growth in tumor-bearing mice by establishing a subcutaneous transplantation tumor model for lung cancer, and the tumor size was smaller and was reduced about 79 % in 2 mg/kg AANL-SeNPs group compared with PBS group. Mechanistically, a total of 38 differentially expressed proteins were identified by data-independent acquisition mass spectrometry. A significantly upregulated protein, CDC-like kinase 2 (CLK2), was screened and validated for further analysis, which showed that the expression levels of CLK2 were increased in H157 and H1437 cells after AANL-SeNPs treatment. The results obtained in this study suggest that a novel selenium nanocomposite AANL-SeNPs, which inhibits lung cancer by upregulating the expression of CLK2.
Asunto(s)
Antineoplásicos , Proliferación Celular , Neoplasias Pulmonares , Nanocompuestos , Proteínas Tirosina Quinasas , Selenio , Regulación hacia Arriba , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Nanocompuestos/química , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Animales , Selenio/química , Selenio/farmacología , Ratones , Regulación hacia Arriba/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Estructura Molecular , Relación Estructura-Actividad , Supervivencia Celular/efectos de los fármacos , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Neoplasias Experimentales/metabolismo , Línea Celular Tumoral , Ratones Endogámicos BALB C , Ratones DesnudosRESUMEN
BACKGROUND: We have shown that Hippo-YAP signaling pathway plays an important role in endothelial cell differentiation. Vestigial-like family member 4 (VGLL4) has been identified as a YAP inhibitor. However, the exact function of VGLL4 in vascular endothelial cell development remains unclear. In this study, we investigated the role of VGLL4, in human endothelial lineage specification both in 3D vascular organoid and 2D endothelial cell differentiation. METHODS AND RESULTS: In this study, we found that VGLL4 was increased during 3D vascular organoids generation and directed differentiation of human embryonic stem cells H1 towards the endothelial lineage. Using inducible ectopic expression of VGLL4 based on the piggyBac system, we proved that overexpression of VGLL4 in H1 promoted vascular organoids generation and endothelial cells differentiation. In contrast, VGLL4 knockdown (heterozygous knockout) of H1 exhibited inhibitory effects. Using bioinformatics analysis and protein immunoprecipitation, we further found that VGLL4 binds to TEAD1 and facilitates the expression of endothelial master transcription factors, including FLI1, to promote endothelial lineage specification. Moreover, TEAD1 overexpression rescued VGLL4 knockdown-mediated negative effects. CONCLUSIONS: In summary, VGLL4 promotes EC lineage specification both in 3D vascular organoid and 2D EC differentiation from pluripotent stem cell, VGLL4 interacts with TEAD1 and facilitates EC key transcription factor, including FLI1, to enhance EC lineage specification.
Asunto(s)
Células Endoteliales , Células Madre Pluripotentes , Humanos , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Diferenciación Celular , Células Madre Pluripotentes/metabolismo , Factores de Transcripción de Dominio TEARESUMEN
The Hippo signaling pathway plays a critical role in cardiovascular development and stem cell differentiation. Using microarray profiling, we found that the Hippo pathway components vestigial-like family member 4 (VGLL4) and TEA domain transcription factor 1 (TEAD1) were upregulated during vascular smooth muscle cell (VSMC) differentiation from H1 ESCs (H1 embryonic stem cells). To further explore the role and molecular mechanisms of VGLL4 in regulating VSMC differentiation, we generated a VGLL4-knockdown H1 ESC line (heterozygous knockout) using the CRISPR/Cas9 system and found that VGLL4 knockdown inhibited VSMC specification. In contrast, overexpression of VGLL4 using the PiggyBac transposon system facilitated VSMC differentiation. We confirmed that this effect was mediated via TEAD1 and VGLL4 interaction. In addition, bioinformatics analysis revealed that Ten-eleven-translocation 2 (TET2), a DNA dioxygenase, is a target of TEAD1, and a luciferase assay further verified that TET2 is the target of the VGLL4-TEAD1 complex. Indeed, TET2 overexpression promoted VSMC marker gene expression and countered the VGLL4 knockdown-mediated inhibitory effects on VSMC differentiation. In summary, we revealed a novel role of VGLL4 in promoting VSMC differentiation from hESCs and identified TET2 as a new target of the VGLL4-TEAD1 complex, which may demethylate VSMC marker genes and facilitate VSMC differentiation. This study provides new insights into the VGLL4-TEAD1-TET2 axis in VSMC differentiation and vascular development.
Asunto(s)
Dioxigenasas , Células Madre Pluripotentes , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción de Dominio TEA , Músculo Liso Vascular/metabolismo , Diferenciación Celular/fisiología , Células Madre Pluripotentes/metabolismo , Miocitos del Músculo Liso/metabolismo , Proliferación CelularRESUMEN
Cancerous Inhibitor of PP2A (CIP2A), an endogenous PP2A inhibitor, is upregulated and causes reactive astrogliosis, synaptic degeneration, and cognitive deficits in Alzheimer's disease (AD). However, the mechanism underlying the increased CIP2A expression in AD brains remains unclear. We here demonstrated that the DNA damage-related Checkpoint kinase 1 (ChK1) is activated in AD human brains and 3xTg-AD mice. ChK1-mediated CIP2A overexpression drives inhibition of PP2A and activates STAT3, then leads to reactive astrogliosis and neurodegeneration in vitro. Infection of mouse brain with GFAP-ChK1-AAV induced AD-like cognitive deficits and exacerbated AD pathologies in vivo. In conclusion, we showed that ChK1 activation induces reactive astrogliosis, degeneration of neurons, and exacerbation of AD through the CIP2A-PP2A-STAT3 pathway, and inhibiting ChK1 may be a potential therapeutic approach for AD treatment.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Autoantígenos/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Gliosis/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Astrocitos/metabolismo , Autoantígenos/genética , Células Cultivadas , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Proteína Fosfatasa 2/metabolismo , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT3/metabolismo , Transducción de SeñalRESUMEN
Nanotechnology is one of the most promising and decisive technologies in the world. Nanomaterials, as the primary research aspect of nanotechnology, are quite different from macroscopic materials because of their unique optical, electrical, magnetic, thermal properties, and more robust mechanical properties, which make them play an essential role in the field of materials science, biomedical field, aerospace field, and environmental energy. Different preparation methods for nanomaterials have various physical and chemical properties and are widely used in different areas. In this review, we focused on the preparation methods, including chemical, physical, and biological methods due to the properties of nanomaterials. We mainly clarified the characteristics, advantages, and disadvantages of different preparation methods. Then, we focused on the applications of nanomaterials in biomedicine, including biological detection, tumor diagnosis, and disease treatment, which provide a development trend and promising prospects for nanomaterials.
Asunto(s)
Nanoestructuras , Neoplasias , Humanos , Nanoestructuras/química , Nanotecnología/métodos , Sistemas de Liberación de Medicamentos/métodos , Neoplasias/diagnóstico , Neoplasias/terapiaRESUMEN
BACKGROUND: Macrobrachium nipponense, is an important economic indigenous prawn and is widely distributed in China. However, most these genetic structure analysis researches were focused on a certain water area, systematic comparative studies on genetic structure of M. nipponense across China are not yet available. METHODS AND RESULTS: In this study, D-loop region sequences was used to investigate the genetic diversity and population structure of 22 wild populations of M. nipponense through China, containing the major rivers and lakes of China. Totally 473 valid D-loop sequences with a length of 1110 bp were obtained, and 348 variation sites and 221 haplotypes were detected. The haplotype diversity (h) was ranged from 0.1630 (Bayannur) ~ 1.0000 (Amur River) and the nucleotide diversity π value ranged from 0.001164 (Min River) ~ 0.037168 (Nen River). The pairwise genetic differentiation index (FST) ranged from 0.00344 to 0.91243 and most pair-wised FST was significant (P < 0.05). The lowest FST was displayed in Min River and Jialing River populations and the highest was between Nandu River and Nen River populations. The phylogenetic tree of genetic distance showed that all populations were divided into two branches. The Dianchi Lake, Nandu River, Jialing River and Min River populations were clustered into one branch. The neutral test and mismatch distribution results showed that M. nipponense populations were not experienced expanding and kept a steady increase. CONCLUSIONS: Taken together, a joint resources protection and management strategy for M. nipponense have been suggested based on the results of this study for its sustainable use.
Asunto(s)
Variación Genética , Palaemonidae , Animales , Variación Genética/genética , Filogenia , Palaemonidae/genética , China , RíosRESUMEN
The relationship between molting and reproduction has received more attention in economically important crustacean decapods. Molting and reproduction are synergistic events in Macrobrachium nipponense, but the molecular regulatory mechanisms behind them are unclear. In the current study, we performed Illumina sequencing for the ovaries of M. nipponense during the molt cycle (pre-molting, Prm; mid-molting, Mm; and post-molting, Pom). A total of 66.57 Gb of transcriptome data were generated through sequencing, resulting in the identification of 105,149 unigenes whose alignment ratio with the reference genome exceeded 87.57%. Differentially expressed genes (DEGs) were annotated through the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases for gene classification and pathway analysis. A total of twenty-six molt-related DEGs were found, and their expression patterns were examined across various molting stages. The KEGG enrichment analysis revealed that the key pathways involved in regulating the molting process of M. nipponense primarily include the mTOR, insect hormone biosynthesis, TGF-beta, and Wnt signaling pathways. Our transcriptomic data suggest that these pathways crosstalk with each other to regulate the synthesis and degradation of ecdysone throughout the molt cycle. The current study has deepened our understanding of the molecular mechanisms of crustacean molting and will serve as a basis for future studies of crustaceans and other molting animals.
Asunto(s)
Palaemonidae , Animales , Femenino , Palaemonidae/genética , Muda/genética , Ovario/metabolismo , Perfilación de la Expresión Génica/métodos , Transcriptoma , Reproducción/genéticaRESUMEN
Sex reversal induced by 17ß-estradiol (E2) has shown the potential possibility for monoculture technology development. The present study aimed to determine whether dietary supplementation with different concentrations of E2 could induce sex reversal in M. nipponense, and select the sex-related genes by performing the gonadal transcriptome analysis of normal male (M), normal female (FM), sex-reversed male prawns (RM), and unreversed male prawns (NRM). Histology, transcriptome analysis, and qPCR were performed to compare differences in gonad development, key metabolic pathways, and genes. Compared with the control, after 40 days, feeding E2 with 200 mg/kg at PL25 (PL: post-larvae developmental stage) resulted in the highest sex ratio (female: male) of 2.22:1. Histological observations demonstrated the co-existence of testis and ovaries in the same prawn. Male prawns from the NRM group exhibited slower testis development without mature sperm. RNA sequencing revealed 3702 differentially expressed genes (DEGs) between M vs. FM, 3111 between M vs. RM, and 4978 between FM vs. NRM. Retinol metabolism and nucleotide excision repair pathways were identified as the key pathways for sex reversal and sperm maturation, respectively. Sperm gelatinase (SG) was not screened in M vs. NRM, corroborating the results of the slice D. In M vs. RM, reproduction-related genes such as cathepsin C (CatC), heat shock protein cognate (HSP), double-sex (Dsx), and gonadotropin-releasing hormone receptor (GnRH) were expressed differently from the other two groups, indicating that these are involved in the process of sex reversal. Exogenous E2 can induce sex reversal, providing valuable evidence for the establishment of monoculture in this species.
Asunto(s)
Palaemonidae , Animales , Masculino , Femenino , Palaemonidae/metabolismo , Semen , Perfilación de la Expresión Génica/métodos , Estradiol/farmacología , Estradiol/metabolismo , Ovario/metabolismo , TranscriptomaRESUMEN
This study investigated the potential to use double-stranded RNA insulin-like androgenic gland hormone (dsIAG) to induce sex reversal in Macrobrachium nipponense and identified the molecular mechanisms underlying crustacean reproduction and sex differentiation. The study aimed to determine whether dsIAG could induce sex reversal in PL30-male M. nipponense during a critical period. The sex-related genes were selected by performing the gonadal transcriptome analysis of normal male (dsM), normal female (dsFM), neo-female sex-reversed individuals (dsRM), and unreversed males (dsNRM). After six injections, the experiment finally resulted in a 20% production of dsRM. Histologically, dsRM ovaries developed slower than dsFM, but dsNRM spermathecae developed normally. A total of 1718, 1069, and 255 differentially expressed genes were identified through transcriptome sequencing of the gonads in three comparison groups, revealing crucial genes related to reproduction and sex differentiation, such as GnRHR, VGR, SG, and LWS. Principal Component Analysis (PCA) also distinguished dsM and dsRM very well. In addition, this study predicted that the eyestalks and the "phototransduction-fly" photoperiodic pathways of M. nipponense could play an important role in sex reversal. The enrichment of related pathways and growth traits in dsNRM were combined to establish that IAG played a significant role in reproduction, growth regulation, and metabolism. Finally, complete sex reversal may depend on specific stimuli at critical periods. Overall, this study provides valuable findings for the IAG regulation of sex differentiation, reproduction, and growth of M. nipponense in establishing a monoculture.
Asunto(s)
Insulina , Palaemonidae , Humanos , Femenino , Masculino , Animales , Andrógenos/farmacología , Palaemonidae/genética , Diferenciación Sexual/genética , Insulina Regular Humana , Reproducción/genéticaRESUMEN
Endothelial cells (ECs) derived from pluripotent stem cells (PSCs) provide great resource for vascular disease modeling and cell-based regeneration therapy. However, the molecular mechanisms of EC differentiation are not completely understood. In this study, we checked transcriptional profile by microarray and found Hippo pathway is changed and the activity of YAP decreased during mesoderm-mediated EC differentiation from human embryonic stem cells (hESCs). Knockdown of YAP in hESCs promoted both mesoderm and EC differentiation indicating by mesodermal- or EC-specific marker gene expression increased both in mRNA and protein level. In contrast, overexpression of YAP inhibited mesoderm and EC differentiation. Microarray data showed that several key transcription factors of EC differentiation, such as FLI1, ERG, SOX17 are upregulated. Interestingly, knockdown YAP enhanced the expression of these master transcription factors. Bioinformation analysis revealed that TEAD, a YAP binds transcription factors, might regulate the expression of EC master TFs, including FLI1. Luciferase assay confirmed that YAP binds to TEAD1, which would inhibit FLI1 expression. Finally, FLI1 overexpression rescued the effects of YAP overexpression-mediated inhibition of EC differentiation. In conclusion, we revealed the inhibitory effects of YAP on EC differentiation from PSCs, and YAP inhibition might promote expression of master TFs FLI1 for EC commitment through interacting with TEAD1, which might provide an idea for EC differentiation and vascular regeneration via manipulating YAP signaling.
Asunto(s)
Células Madre Embrionarias Humanas , Células Madre Pluripotentes , Diferenciación Celular/genética , Células Endoteliales/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Humanos , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAPRESUMEN
BACKGROUND: Macrobrachium nipponense is an economically and ecologically important freshwater prawn that is widely farmed in China. In contrast to other species of marine shrimp, M. nipponense has a short sexual maturity period, resulting in not only high stocking densities, but also a reduced survival rate and increased risk of hypoxia. Therefore, there is an urgent need to study the molecular mechanisms underlying fast ovary maturation in this species. RESULTS: Comparative transcriptome analysis was performed using hepatopancreatic tissue from female M. nipponense across five ovarian maturation stages to explore differentially expressed genes and pathways involved in ovarian maturation. In total, 118.01 Gb of data were generated from 15 transcriptomes. Approximately 90.46% of clean reads were mapped from the M. nipponense reference genome. A comprehensive comparative analysis between successive ovarian maturation stages generated 230-5814 differentially expressed genes. Gene Ontology (GO) enrichment was highly concentrated in the "biological process" category in all four comparison groups, and mainly focused on energy synthesis and accumulation, energy decomposition and transport. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results showed that, among 20 significantly enriched KEGG pathways, nine were involved in the synthesis, degradation, and metabolism of carbohydrates, lipids, and other nutrient intermediates, suggesting that the hepatopancreas has an important role in energy supply during ovarian maturation. Furthermore, the "Insect hormone biosynthesis" pathway was found to have a dominant role in the development of the ovary from immaturity to maturity, supporting the hypothesis that ecdysteroid- and juvenile hormone-signaling pathways have an important role in hepatopancreas regulation of ovarian maturation. CONCLUSION: Taken together, this study sheds light on the role of the hepatopancreas in the molecular regulation of ovary maturation in M. nipponense. The present study provided new insights for understanding the mechanisms of reproductive regulation in crustaceans.
Asunto(s)
Palaemonidae , Animales , Femenino , Perfilación de la Expresión Génica , Hepatopáncreas , Ovario/metabolismo , Palaemonidae/genética , TranscriptomaRESUMEN
The glycoprotein alpha-1-antichymotrypsin (AACT), a serine protease inhibitor, is mainly synthesized in the liver and then secreted into the blood and is involved in the acute phase response, inflammation, and proteolysis. The dysregulation of AACT and its glycosylation levels are associated with tumor progression and recurrence, and could be used as a biomarker for tumor monitoring. In this review, we summarized the expression level, glycosylation modification, and biological characteristics of AACT during inflammation, neurodegenerative or other elderly diseases, and tumorigenesis, as well as, focused on the biological roles of AACT in cancer. The aberrant expression of AACT in cancer might be due to genetic alterations and/or immune by bioinformatics analysis. Moreover, AACT may serve as a diagnostic or prognostic biomarker or therapeutic target in tumors. Furthermore, we found that the expression of AACT was associated with the overall survival of patients with human cancers. Decreased AACT expression was associated with poor survival in patients with liver cancer, increased AACT expression was associated with shorter survival in patients with pancreatic cancer, and decreased AACT expression was associated with shorter survival in patients with early lung cancer. The review confirmed the key roles of AACT in tumorigenesis, suggesting that the glycoprotein AACT may serve as a biomarker for tumor diagnosis and prognosis, and could be a potential therapeutic target for human diseases.
RESUMEN
Pulmonary hypertension (PH), a rare but deadly cardiopulmonary disorder, is characterized by extensive remodeling of pulmonary arteries resulting from enhancement of pulmonary artery smooth muscle cell proliferation and suppressed apoptosis; however, the underlying pathophysiological mechanisms remain largely unknown. Recently, epigenetics has gained increasing prominence in the development of PH. We aimed to investigate the role of vestigial-like family member 4 (VGLL4) in chronic normobaric hypoxia (CNH)-induced PH and to address whether it is associated with epigenetic regulation. The rodent model of PH was established by CNH treatment (10% O2 , 23 hours/day). Western blot, quantitative reverse transcription polymerase chain reaction, immunofluorescence, immunoprecipitation, and adeno-associated virus tests were performed to explore the potential mechanisms involved in CNH-induced PH in mice. VGLL4 expression was upregulated and correlated with CNH in PH mouse lung tissues in a time-dependent manner. VGLL4 colocalized with α-smooth muscle actin in cultured pulmonary arterial smooth muscle cells (PASMCs), and VGLL4 immunoactivity was increased in PASMCs following hypoxia exposure in vitro. VGLL4 knockdown attenuated CNH-induced PH and pulmonary artery remodeling by blunting signal transducer and activator of transcription 3 (STAT3) signaling; conversely, VGLL4 overexpression exacerbated the development of PH. CNH enhanced the acetylation of VGLL4 and increased the interaction of ac-H3K9/VGLL4 and ac-H3K9/STAT3 in the lung tissues, and levels of ac-H3K9, p-STAT3/STAT3, and proliferation-associated protein levels were markedly up-regulated, whereas apoptosis-related protein levels were significantly downregulated, in the lung tissues of mice with CNH-induced PH. Notably, abrogation of VGLL4 acetylation reversed CNH-induced PH and pulmonary artery remodeling and suppressed STAT3 signaling. Finally, STAT3 knockdown alleviated CNH-induced PH. In conclusion, VGLL4 acetylation upregulation could contribute to CNH-induced PH and pulmonary artery remodeling via STAT3 signaling, and abrogation of VGLL4 acetylation reversed CNH-induced PH. Pharmacological or genetic deletion of VGLL4 might be a potential target for therapeutic interventions in CNH-induced PH.
Asunto(s)
Hipertensión Pulmonar/metabolismo , Pulmón , Músculo Liso Vascular , Arteria Pulmonar , Factores de Transcripción/fisiología , Remodelación Vascular , Animales , Proliferación Celular , Células Cultivadas , Enfermedad Crónica , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Factor de Transcripción STAT3/metabolismoRESUMEN
Molting is a basic physiological behavior of the Oriental river prawn (Macrobrachium nipponense), however, the gene expression patterns and immune mechanisms during the molting process of Oriental river prawn are unclear. In the current study, the gene expression levels of the hepatopancreas of the Oriental river prawn at different molting stages (pre-molting, Prm; mid-molting, Mm; and post-molting, Pom) were detected by mRNA sequencing. A total of 1721, 551, and 1054 differentially expressed genes (DEGs) were identified between the Prm hepatopancreas (PrmHe) and Mm hepatopancreas (MmHe), MmHe and Pom hepatopancreas (PomHe) and PrmHe and PomHe, respectively. The results showed that a total of 1151 DEGs were annotated into 316 signaling pathways, and the significantly enriched immune-related pathways were "Lysosome", "Hippo signaling pathway", "Apoptosis", "Autophagy-animal", and "Endocytosis". The qRT-PCR verification results of 30 randomly selected DEGs were consistent with RNA-seq. The expression patterns of eight immune related genes in different molting stages of the Oriental river prawn were analyzed by qRT-PCR. The function of Caspase-1 (CASP1) was further investigated by bioinformatics, qRT-PCR, and RNAi analysis. CASP1 has two identical conserved domains: histidine active site and pentapeptide motif, and the expression of CASP1 is the highest in ovary. The expression levels of triosephosphate isomerase (TPI), Cathepsin B (CTSB) and Hexokinase (HXK) were evaluated after knockdown of CASP1. This research provides a valuable basis to improve our understanding the immune mechanisms of Oriental river prawns at different molting stages. The identification of immune-related genes is of great significance for enhancing the immunity of the Oriental river prawn, or other crustaceans, by transgenic methods in the future.
Asunto(s)
Palaemonidae , Femenino , Animales , Palaemonidae/metabolismo , Muda/genética , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Hepatopáncreas/metabolismo , Perfilación de la Expresión Génica , TranscriptomaRESUMEN
Clinical trials suggest that non-small-cell lung cancer (NSCLC) patients with KRAS mutations and wild-type EGFR have reduced benefits from gefitinib treatment. Ferroptosis is a new form of cell death that plays an important role in mediating the sensitivity of EGFR-TIKs. Here, we explored the antitumor ability of gefitinib in combination with betulin to overcome drug resistance through ferroptosis in wild-type EGFR/KRAS-mutant NSCLC cells. A549 and H460 cells were treated with gefitinib and betulin, and cell viability, apoptosis, and migration ability were assessed using the CCK-8 assay, flow cytometry, and wound-healing assay, respectively. Several cell death inhibitors were used to study the form of cell death. Ferroptosis-related events were detected by performing reactive oxygen species (ROS) and iron level detection, malondialdehyde (MDA) assay, and glutathione (GSH) assay. EMT-associated proteins and ferroptosis-related proteins were detected by using western blotting. A xenograft model was constructed in vivo to investigate the role of the combination treatment of betulin and gefitinib in NSCLC tumor growth. Gefitinib in combination with betulin exhibited antagonistic effects on cellular viability and induced cell apoptosis. It also induced ROS accumulation, lipid peroxidation, and GSH depletion and induced ferroptosis-related gene expression. Moreover, ferroptosis inhibitors, but not inhibitors of other forms of cell death, abrogated the effect of gefitinib in combination with betulin. Moreover, it also inhibited the tumor growth of NSCLC in vivo. Our findings suggest that gefitinib in combination with betulin is a novel therapeutic approach to overcome gefitinib resistance in EGFR wild-type/KRAS-mutant NSCLC cells by inducing ferroptosis.
Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Ferroptosis , Neoplasias Pulmonares , Antineoplásicos/farmacología , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos/genética , Receptores ErbB/metabolismo , Gefitinib/uso terapéutico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética , Especies Reactivas de Oxígeno/metabolismo , TriterpenosRESUMEN
HR4, a member of the nuclear receptor family, has been extensively studied in insect molting and development, but reports on crustaceans are still lacking. In the current study, the MnHR4 gene was identified in Macrobrachium nipponense. To further improve the molting molecular mechanism of M. nipponense, this study investigated whether MnHR4 functions during the molting process of M. nipponense. The domain, phylogenetic relationship and 3D structure of MnHR4 were analyzed by bioinformatics. Quantitative real-time PCR (qRT-PCR) analysis showed that MnHR4 was highly expressed in the ovary. In different embryo stages, the highest mRNA expression was observed in the cleavage stage (CS). At different individual stages, the mRNA expression of MnHR4 reached its peak on the fifteenth day after hatching (L15). The in vivo injection of 20-hydroxyecdysone (20E) can effectively promote the expression of the MnHR4 gene, and the silencing of the MnHR4 gene increased the content of 20E in M. nipponense. The regulatory role of MnHR4 in 20E synthesis and 20E signaling was further investigated by RNAi. Finally, the function of the MnHR4 gene in the molting process of M. nipponense was studied by counting the molting frequency. After knocking down MnHR4, the molting frequency of M. nipponense decreased significantly. It was proved that MnHR4 plays a pivotal role in the molting process of M. nipponense.
Asunto(s)
Muda , Palaemonidae , Animales , Femenino , Muda/genética , Palaemonidae/metabolismo , Ecdisterona/metabolismo , Filogenia , Secuencia de Aminoácidos , ARN Mensajero/genética , Receptores Citoplasmáticos y Nucleares/genéticaRESUMEN
Hyperhomocysteinaemia (HHcy)-impaired endothelial dysfunction including endoplasmic reticulum (ER) stress plays a crucial role in atherogenesis. Hydrogen sulphide (H2 S), a metabolic production of Hcy and gasotransmitter, exhibits preventing cardiovascular damages induced by HHcy by reducing ER stress, but the underlying mechanism is unclear. Here, we made an atherosclerosis with HHcy mice model by ApoE knockout mice and feeding Pagien diet and drinking L-methionine water. H2 S donors NaHS and GYY4137 treatment lowered plaque area and ER stress in this model. Protein disulphide isomerase (PDI), a modulation protein folding key enzyme, was up-regulated in plaque and reduced by H2 S treatment. In cultured human aortic endothelial cells, Hcy dose and time dependently elevated PDI expression, but inhibited its activity, and which were rescued by H2 S. H2 S and its endogenous generation key enzyme-cystathionine γ lyase induced a new post-translational modification-sulfhydration of PDI. Sulfhydrated PDI enhanced its activity, and two cysteine-terminal CXXC domain of PDI was identified by site mutation. HHcy lowered PDI sulfhydration association ER stress, and H2 S rescued it but this effect was blocked by cysteine site mutation. Conclusively, we demonstrated that H2 S sulfhydrated PDI and enhanced its activity, reducing HHcy-induced endothelial ER stress to attenuate atherosclerosis development.
Asunto(s)
Aterosclerosis/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Endoteliales/metabolismo , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Hiperhomocisteinemia/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Células HEK293 , Homocisteína/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados para ApoE , Proteína Disulfuro Isomerasas/química , Regulación hacia ArribaRESUMEN
BACKGROUND: Macrobrachium nipponense is an economically important species of freshwater shrimp in China. Unlike other marine shrimps, the ovaries in adult female M. nipponense can mature rapidly and periodically during the reproductive period, but the resulting high stocking densities and environmental deterioration can negatively impact the harvest yield and economic benefits. To better understand ovary development in female M. nipponense, we performed systematic transcriptome sequencing of five different stages of ovarian maturation. RESULTS: We obtained 255,966 Gb of high quality transcriptome data from 15 samples. Of the 105,082 unigenes that were selected, 30,878 were successfully annotated. From these unigenes, we identified 17 differentially expressed genes and identified three distinct gene expression patterns related to different biological processes. We found that cathepins, legumains, and cystatin were enriched in the lysosome pathway, and they are related to vitellogenin hydrolysis. Additionally, we found that myosin heavy chain 67 participated in oocyte excretion. CONCLUSIONS: We provide the first detailed transcriptome data relating to the ovarian maturation cycle in M. nipponense. Our results provide important reference information about the genomics, molecular biology, physiology, and population genetics of M. nipponense and other crustaceans. It is conducive to further solve the problem of M. nipponense rapid ovarian maturation from the aspects of energy supply and cell division.
Asunto(s)
Palaemonidae , Animales , China , Femenino , Perfilación de la Expresión Génica , Ovario , Palaemonidae/genética , TranscriptomaRESUMEN
Polyphyllin I (PPI) is a natural phytochemical drug isolated from plants which can inhibit the proliferation of cancer cells. One of the PPI tumor-inhibitory effects is through downregulating the expression of Cancerous Inhibitor of PP2A (CIP2A), the latter, is found upregulated in Alzheimer's disease (AD) brains and participates in the development of AD. In this study, we explored the application of PPI in experimental AD treatment in CIP2A-overexpressed cells and 3XTg-AD mice. In CIP2A-overexpressed HEK293 cells or primary neurons, PPI effectively reduced CIP2A level, activated PP2A, and decreased the phosphorylation of tau/APP and the level of Aß. Furthermore, synaptic protein levels were restored by PPI in primary neurons overexpressing CIP2A. Animal experiments in 3XTg-AD mice revealed that PPI treatment resulted in decreased CIP2A expression and PP2A re-activation. With the modification of CIP2A-PP2A signaling, the hyperphosphorylation of tau/APP and Aß overproduction were prevented, and the cognitive impairments of 3XTg-AD mice were rescued. In summary, PPI ameliorated AD-like pathology and cognitive impairment through modulating CIP2A-PP2A signaling pathway. It may be a potential drug candidate for the treatment of AD.