Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Pain Headache Rep ; 24(10): 56, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32803491

RESUMEN

PURPOSE OF REVIEW: This review examines recent (2016 onwards) neuroscientific findings on the mechanisms supporting mindfulness-associated pain relief. To date, its clear that mindfulness lowers pain by engaging brain processes that are distinct from placebo and vary across meditative training level. Due to rapid developments in the field of contemplative neuroscience, an update review on the neuroimaging studies focused on mindfulness, and pain is merited. RECENT FINDINGS: Mindfulness-based therapies produce reliably reductions in a spectrum of chronic pain conditions through psychological, physiological, and neural mechanisms supporting the modulation of evaluation and appraisal of innocuous and noxious sensory events. Neuroimaging and randomized control studies confirm that mindfulness meditation reliably reduces experimentally induced and clinical pain by engaging multiple, unique, non-opioidergic mechanisms that are distinct from placebo and which vary across meditative training level. These promising findings underscore the potential of mindfulness-based approaches to produce long-lasting improvements in pain-related symptomology.


Asunto(s)
Encéfalo/fisiopatología , Dolor Crónico/terapia , Meditación/psicología , Atención Plena , Manejo del Dolor , Humanos , Atención Plena/métodos , Manejo del Dolor/métodos , Dimensión del Dolor
2.
Artículo en Inglés | MEDLINE | ID: mdl-37985872

RESUMEN

Chronic low back pain (cLBP) is the most prevalent chronic pain condition. There are no treatments that haven been found to directly assuage evoked cLBP. To this extent, mindfulness-meditation is a promising pain therapy. Yet, it is unclear if meditation can be utilized to directly attenuate evoked chronic pain through endogenous opioids. A double-blind, randomized, and placebo-controlled clinical trial with a drug crossover design examined if mindfulness-meditation, as compared to sham mindfulness-meditation, attenuated straight leg-raise test evoked chronic pain during intravenous (0.15 mg/kg bolus + 0.15 mg/kg/hour maintenance) naloxone (opioid antagonist) and placebo-saline infusion. Fifty-nine individuals with cLBP (mean age = 46 years; 30 females) completed all study procedures. After the pre-intervention pain testing session, patients were randomized to a four-session (20-min/session) mindfulness (n = 30) or sham mindfulness-meditation (n = 29) intervention. After the interventions, mindfulness and sham mindfulness-meditation were associated with significant reductions in back pain during saline and naloxone infusion when compared to rest (non-meditation) in response to the cLBP-evoking straight leg-raise test. These results indicate that meditation directly reduces evoked chronic pain through non-opioidergic processes. Importantly, after the interventions, the mindfulness group reported significantly lower straight leg-raise induced pain than the sham mindfulness-meditation group during rest (non-meditation) and meditation. Mindfulness and sham mindfulness-meditation training was also associated with significantly lower Brief Pain Inventory severity and interference scores. The pain-relieving effects of mindfulness meditation were more pronounced than a robust sham-mindfulness meditation intervention, suggesting that non-reactive appraisal processes may be uniquely associated with improvements in chronic low-back pain.Trial Registration: ClinicalTrials.gov identifier: NCT04034004.

3.
Neuron ; 102(6): 1235-1248.e5, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31056352

RESUMEN

A key function of the hippocampus and entorhinal cortex is to bridge events that are discontinuous in time, and it has been proposed that medial entorhinal cortex (mEC) supports memory retention by sustaining the sequential activity of hippocampal time cells. Therefore, we recorded hippocampal neuronal activity during spatial working memory and asked whether time cells depend on mEC inputs. Working memory was impaired in rats with mEC lesions, but the occurrence of time cells and of trajectory-coding cells in the stem did not differ from controls. Rather, the main effect of mEC lesions was an extensive spatial coding deficit of CA1 cells, which included inconsistency over time and reduced firing differences between positions on the maze. Therefore, mEC is critical for providing stable and distinct spatial information to hippocampus, while working memory (WM) maintenance is likely supported either by local synaptic plasticity in hippocampus or by activity patterns elsewhere in the brain.


Asunto(s)
Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Corteza Entorrinal/fisiología , Memoria a Corto Plazo/fisiología , Neuronas/fisiología , Memoria Espacial/fisiología , Tiempo , Animales , Fenómenos Electrofisiológicos , Hipocampo/fisiología , Vías Nerviosas/fisiología , Plasticidad Neuronal , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA