Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nature ; 625(7993): 166-174, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38057662

RESUMEN

Myeloid cells are known to suppress antitumour immunity1. However, the molecular drivers of immunosuppressive myeloid cell states are not well defined. Here we used single-cell RNA sequencing of human and mouse non-small cell lung cancer (NSCLC) lesions, and found that in both species the type 2 cytokine interleukin-4 (IL-4) was predicted to be the primary driver of the tumour-infiltrating monocyte-derived macrophage phenotype. Using a panel of conditional knockout mice, we found that only deletion of the IL-4 receptor IL-4Rα in early myeloid progenitors in bone marrow reduced tumour burden, whereas deletion of IL-4Rα in downstream mature myeloid cells had no effect. Mechanistically, IL-4 derived from bone marrow basophils and eosinophils acted on granulocyte-monocyte progenitors to transcriptionally programme the development of immunosuppressive tumour-promoting myeloid cells. Consequentially, depletion of basophils profoundly reduced tumour burden and normalized myelopoiesis. We subsequently initiated a clinical trial of the IL-4Rα blocking antibody dupilumab2-5 given in conjunction with PD-1/PD-L1 checkpoint blockade in patients with relapsed or refractory NSCLC who had progressed on PD-1/PD-L1 blockade alone (ClinicalTrials.gov identifier NCT05013450 ). Dupilumab supplementation reduced circulating monocytes, expanded tumour-infiltrating CD8 T cells, and in one out of six patients, drove a near-complete clinical response two months after treatment. Our study defines a central role for IL-4 in controlling immunosuppressive myelopoiesis in cancer, identifies a novel combination therapy for immune checkpoint blockade in humans, and highlights cancer as a systemic malady that requires therapeutic strategies beyond the primary disease site.


Asunto(s)
Médula Ósea , Carcinogénesis , Interleucina-4 , Mielopoyesis , Transducción de Señal , Animales , Humanos , Ratones , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Médula Ósea/efectos de los fármacos , Médula Ósea/metabolismo , Carcinogénesis/efectos de los fármacos , Carcinogénesis/metabolismo , Carcinogénesis/patología , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Inhibidores de Puntos de Control Inmunológico/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Interleucina-4/metabolismo , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Monocitos/efectos de los fármacos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Recurrencia , Transducción de Señal/efectos de los fármacos
2.
Circulation ; 148(5): 405-425, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37409482

RESUMEN

BACKGROUND: Adeno-associated virus (AAV) has emerged as one of the best tools for cardiac gene delivery due to its cardiotropism, long-term expression, and safety. However, a significant challenge to its successful clinical use is preexisting neutralizing antibodies (NAbs), which bind to free AAVs, prevent efficient gene transduction, and reduce or negate therapeutic effects. Here we describe extracellular vesicle-encapsulated AAVs (EV-AAVs), secreted naturally by AAV-producing cells, as a superior cardiac gene delivery vector that delivers more genes and offers higher NAb resistance. METHODS: We developed a 2-step density-gradient ultracentrifugation method to isolate highly purified EV-AAVs. We compared the gene delivery and therapeutic efficacy of EV-AAVs with an equal titer of free AAVs in the presence of NAbs, both in vitro and in vivo. In addition, we investigated the mechanism of EV-AAV uptake in human left ventricular and human induced pluripotent stem cell-derived cardiomyocytes in vitro and mouse models in vivo using a combination of biochemical techniques, flow cytometry, and immunofluorescence imaging. RESULTS: Using cardiotropic AAV serotypes 6 and 9 and several reporter constructs, we demonstrated that EV-AAVs deliver significantly higher quantities of genes than AAVs in the presence of NAbs, both to human left ventricular and human induced pluripotent stem cell-derived cardiomyocytes in vitro and to mouse hearts in vivo. Intramyocardial delivery of EV-AAV9-sarcoplasmic reticulum calcium ATPase 2a to infarcted hearts in preimmunized mice significantly improved ejection fraction and fractional shortening compared with AAV9-sarcoplasmic reticulum calcium ATPase 2a delivery. These data validated NAb evasion by and therapeutic efficacy of EV-AAV9 vectors. Trafficking studies using human induced pluripotent stem cell-derived cells in vitro and mouse hearts in vivo showed significantly higher expression of EV-AAV6/9-delivered genes in cardiomyocytes compared with noncardiomyocytes, even with comparable cellular uptake. Using cellular subfraction analyses and pH-sensitive dyes, we discovered that EV-AAVs were internalized into acidic endosomal compartments of cardiomyocytes for releasing and acidifying AAVs for their nuclear uptake. CONCLUSIONS: Together, using 5 different in vitro and in vivo model systems, we demonstrate significantly higher potency and therapeutic efficacy of EV-AAV vectors compared with free AAVs in the presence of NAbs. These results establish the potential of EV-AAV vectors as a gene delivery tool to treat heart failure.


Asunto(s)
Vesículas Extracelulares , Células Madre Pluripotentes Inducidas , Humanos , Ratones , Animales , Dependovirus/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Vectores Genéticos , Células Madre Pluripotentes Inducidas/metabolismo , Anticuerpos Neutralizantes , Vesículas Extracelulares/metabolismo
3.
Allergy ; 78(3): 752-766, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36445014

RESUMEN

BACKGROUND: Atopic diseases are characterized by IgE antibody responses that are dependent on cognate CD4 T cell help and T cell-produced IL-4 and IL-13. Current models of IgE cell differentiation point to the role of IgG memory B cells as precursors of pathogenic IgE plasma cells. The goal of this work was to identify intrinsic features of memory B cells that are associated with IgE production in atopic diseases. METHODS: Peripheral blood B lymphocytes were collected from individuals with physician diagnosed asthma or atopic dermatitis (AD) and from non-atopic individuals. These samples were analyzed by spectral flow cytometry, single cell RNA sequencing (scRNAseq), and in vitro activation assays. RESULTS: We identified a novel population of IgG memory B cells characterized by the expression of IL-4/IL-13 regulated genes FCER2/CD23, IL4R, IL13RA1, and IGHE, denoting a history of differentiation during type 2 immune responses. CD23+ IL4R+ IgG+ memory B cells had increased occurrence in individuals with atopic disease. Importantly, the frequency of CD23+ IL4R+ IgG+ memory B cells correlated with levels of circulating IgE. Consistently, in vitro stimulated B cells from atopic individuals generated more IgE+ cells than B cells from non-atopic subjects. CONCLUSIONS: These findings suggest that CD23+ IL4R+ IgG+ memory B cells transcribing IGHE are potential precursors of IgE plasma cells and are linked to pathogenic IgE production.


Asunto(s)
Células B de Memoria , Receptores de IgE , Humanos , Receptores de IgE/metabolismo , Interleucina-13 , Interleucina-4 , Inmunoglobulina E , Inmunoglobulina G , Subunidad alfa del Receptor de Interleucina-4 , Lectinas Tipo C
4.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37834162

RESUMEN

Extracellular vesicles (EVs)-including apoptotic bodies, microvesicles, and exosomes-are released by almost all cell types and contain molecular footprints from their cell of origin, including lipids, proteins, metabolites, RNA, and DNA. They have been successfully isolated from blood, urine, semen, and other body fluids. In this review, we discuss the current understanding of the predictive value of EVs in prostate and renal cancer. We also describe the findings supporting the use of EVs from liquid biopsies in stratifying high-risk prostate/kidney cancer and advanced disease, such as castration-resistant (CRPC) and neuroendocrine prostate cancer (NEPC) as well as metastatic renal cell carcinoma (RCC). Assays based on EVs isolated from urine and blood have the potential to serve as highly sensitive diagnostic studies as well as predictive measures of tumor recurrence in patients with prostate and renal cancers. Overall, we discuss the biogenesis, isolation, liquid-biopsy, and therapeutic applications of EVs in CRPC, NEPC, and RCC.


Asunto(s)
Carcinoma de Células Renales , Exosomas , Vesículas Extracelulares , Neoplasias Renales , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Carcinoma de Células Renales/patología , Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/patología , Relevancia Clínica , Neoplasias Renales/metabolismo , Recurrencia Local de Neoplasia/patología , Vesículas Extracelulares/metabolismo , Exosomas/metabolismo
5.
Hepatology ; 74(1): 183-199, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33237575

RESUMEN

BACKGROUND AND AIMS: Mutations in TERT (telomerase reverse transcriptase) promoter are established gatekeepers in early hepatocarcinogenesis, but little is known about other molecular alterations driving this process. Epigenetic deregulation is a critical event in early malignancies. Thus, we aimed to (1) analyze DNA methylation changes during the transition from preneoplastic lesions to early HCC (eHCC) and identify candidate epigenetic gatekeepers, and to (2) assess the prognostic potential of methylation changes in cirrhotic tissue. APPROACH AND RESULTS: Methylome profiling was performed using Illumina HumanMethylation450 (485,000 cytosine-phosphateguanine, 96% of known cytosine-phosphateguanine islands), with data available for a total of 390 samples: 16 healthy liver, 139 cirrhotic tissue, 8 dysplastic nodules, and 227 HCC samples, including 40 eHCC below 2cm. A phylo-epigenetic tree derived from the Euclidean distances between differentially DNA-methylated sites (n = 421,997) revealed a gradient of methylation changes spanning healthy liver, cirrhotic tissue, dysplastic nodules, and HCC with closest proximity of dysplasia to HCC. Focusing on promoter regions, we identified epigenetic gatekeeper candidates with an increasing proportion of hypermethylated samples (beta value > 0.5) from cirrhotic tissue (<1%), to dysplastic nodules (≥25%), to eHCC (≥50%), and confirmed inverse correlation between DNA methylation and gene expression for TSPYL5 (testis-specific Y-encoded-like protein 5), KCNA3 (potassium voltage-gated channel, shaker-related subfamily, member 3), LDHB (lactate dehydrogenase B), and SPINT2 (serine peptidase inhibitor, Kunitz type 2) (all P < 0.001). Unsupervised clustering of genome-wide methylation profiles of cirrhotic tissue identified two clusters, M1 and M2, with 42% and 58% of patients, respectively, which correlates with survival (P < 0.05), independent of etiology. CONCLUSIONS: Genome-wide DNA-methylation profiles accurately discriminate the different histological stages of human hepatocarcinogenesis. We report on epigenetic gatekeepers in the transition between dysplastic nodules and eHCC. DNA-methylation changes in cirrhotic tissue correlate with clinical outcomes.


Asunto(s)
Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Metilación de ADN , Cirrosis Hepática/genética , Neoplasias Hepáticas/genética , Anciano , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Epigénesis Genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Hígado/patología , Cirrosis Hepática/patología , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Pronóstico
6.
Clin Proteomics ; 19(1): 34, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36171541

RESUMEN

INTRODUCTION: Severe COVID-19 leads to important changes in circulating immune-related proteins. To date it has been difficult to understand their temporal relationship and identify cytokines that are drivers of severe COVID-19 outcomes and underlie differences in outcomes between sexes. Here, we measured 147 immune-related proteins during acute COVID-19 to investigate these questions. METHODS: We measured circulating protein abundances using the SOMAscan nucleic acid aptamer panel in two large independent hospital-based COVID-19 cohorts in Canada and the United States. We fit generalized additive models with cubic splines from the start of symptom onset to identify protein levels over the first 14 days of infection which were different between severe cases and controls, adjusting for age and sex. Severe cases were defined as individuals with COVID-19 requiring invasive or non-invasive mechanical respiratory support. RESULTS: 580 individuals were included in the analysis. Mean subject age was 64.3 (sd 18.1), and 47% were male. Of the 147 proteins, 69 showed a significant difference between cases and controls (p < 3.4 × 10-4). Three clusters were formed by 108 highly correlated proteins that replicated in both cohorts, making it difficult to determine which proteins have a true causal effect on severe COVID-19. Six proteins showed sex differences in levels over time, of which 3 were also associated with severe COVID-19: CCL26, IL1RL2, and IL3RA, providing insights to better understand the marked differences in outcomes by sex. CONCLUSIONS: Severe COVID-19 is associated with large changes in 69 immune-related proteins. Further, five proteins were associated with sex differences in outcomes. These results provide direct insights into immune-related proteins that are strongly influenced by severe COVID-19 infection.

7.
Adv Exp Med Biol ; 1361: 235-247, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35230692

RESUMEN

In recent years, the rapid development of next-generation sequencing (NGS) has led to a significant increase in accuracy toward molecular profiling, allowing noninvasive and real-time detection of novel biomarkers for cancer screening and dynamic monitoring of disease development. Currently, the biggest challenge liquid biopsies face is the selection of the highest signal-bearing tissues (blood/urine or others) and components for diagnosis, being either circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), or extracellular vesicles (EVs). This chapter describes the process of identifying cancer-associated molecular signals from liquid biopsies. First, we address strategies in selecting and processing samples for sequencing, and technical considerations involved in liquid biopsies under three settings: early detection, cancer diagnosis, and metastatic monitoring. Next, we discuss the methods and challenges to identify and validate prognostic signals, such as tumor burden or stage from CTC, targeted and nontargeted mutations from ctDNA, or noncoding RNAs from EVs. Finally, we review the current landscape of novel biomarkers and ongoing clinical trials for liquid biopsies to discuss the potential avenues for future precision medicine and clinical implementation.


Asunto(s)
ADN Tumoral Circulante , Células Neoplásicas Circulantes , Biomarcadores de Tumor/genética , ADN Tumoral Circulante/genética , Humanos , Biopsia Líquida , Células Neoplásicas Circulantes/patología , Medicina de Precisión/métodos
8.
Gut ; 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34321221

RESUMEN

OBJECTIVE: Surveillance tools for early cancer detection are suboptimal, including hepatocellular carcinoma (HCC), and biomarkers are urgently needed. Extracellular vesicles (EVs) have gained increasing scientific interest due to their involvement in tumour initiation and metastasis; however, most extracellular RNA (exRNA) blood-based biomarker studies are limited to annotated genomic regions. DESIGN: EVs were isolated with differential ultracentrifugation and integrated nanoscale deterministic lateral displacement arrays (nanoDLD) and quality assessed by electron microscopy, immunoblotting, nanoparticle tracking and deconvolution analysis. Genome-wide sequencing of the largely unexplored small exRNA landscape, including unannotated transcripts, identified and reproducibly quantified small RNA clusters (smRCs). Their key genomic features were delineated across biospecimens and EV isolation techniques in prostate cancer and HCC. Three independent exRNA cancer datasets with a total of 479 samples from 375 patients, including longitudinal samples, were used for this study. RESULTS: ExRNA smRCs were dominated by uncharacterised, unannotated small RNA with a consensus sequence of 20 nt. An unannotated 3-smRC signature was significantly overexpressed in plasma exRNA of patients with HCC (p<0.01, n=157). An independent validation in a phase 2 biomarker case-control study revealed 86% sensitivity and 91% specificity for the detection of early HCC from controls at risk (n=209) (area under the receiver operating curve (AUC): 0.87). The 3-smRC signature was independent of alpha-fetoprotein (p<0.0001) and a composite model yielded an increased AUC of 0.93. CONCLUSION: These findings directly lead to the prospect of a minimally invasive, blood-only, operator-independent clinical tool for HCC surveillance, thus highlighting the potential of unannotated smRCs for biomarker research in cancer.

9.
Cytometry A ; 99(5): 446-461, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33496367

RESUMEN

Mass cytometry (CyTOF) represents one of the most powerful tools in immune phenotyping, allowing high throughput quantification of over 40 parameters at single-cell resolution. However, wide deployment of CyTOF-based immune phenotyping studies are limited by complex experimental workflows and the need for specialized CyTOF equipment and technical expertise. Furthermore, differences in cell isolation and enrichment protocols, antibody reagent preparation, sample staining, and data acquisition protocols can all introduce technical variation that can confound integrative analyses of large data-sets of samples processed across multiple labs. Here, we present a streamlined whole blood CyTOF workflow which addresses many of these sources of experimental variation and facilitates wider adoption of CyTOF immune monitoring across sites with limited technical expertise or sample-processing resources or equipment. Our workflow utilizes commercially available reagents including the Fluidigm MaxPar Direct Immune Profiling Assay (MDIPA), a dry tube 30-marker immunophenotyping panel, and SmartTube Proteomic Stabilizer, which allows for simple and reliable fixation and cryopreservation of whole blood samples. We validate a workflow that allows for streamlined staining of whole blood samples with minimal processing requirements or expertise at the site of sample collection, followed by shipment to a central CyTOF core facility for batched downstream processing and data acquisition. We apply this workflow to characterize 184 whole blood samples collected longitudinally from a cohort of 72 hospitalized COVID-19 patients and healthy controls, highlighting dynamic disease-associated changes in circulating immune cell frequency and phenotype.


Asunto(s)
COVID-19/diagnóstico , Separación Celular , Citometría de Flujo , Inmunofenotipificación , Leucocitos/inmunología , SARS-CoV-2/inmunología , Flujo de Trabajo , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , COVID-19/sangre , COVID-19/inmunología , COVID-19/virología , Estudios de Casos y Controles , Femenino , Ensayos Analíticos de Alto Rendimiento , Interacciones Huésped-Patógeno , Humanos , Leucocitos/metabolismo , Leucocitos/virología , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , SARS-CoV-2/patogenicidad , Índice de Severidad de la Enfermedad , Adulto Joven
10.
Int J Mol Sci ; 22(18)2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34576294

RESUMEN

Extracellular vesicles (EVs) have brought great momentum to the non-invasive liquid biopsy procedure for the detection, characterization, and monitoring of cancer. Despite the common use of PSA (prostate-specific antigen) as a biomarker for prostate cancer, there is an unmet need for a more specific diagnostic tool to detect tumor progression and recurrence. Exosomes, which are EVs that are released from all cells, play a large role in physiology and pathology, including cancer. They are involved in intercellular communication, immune function, and they are present in every bodily fluid studied-making them an excellent window into how cells are operating. With liquid biopsy, EVs can be isolated and analyzed, enabling an insight into a potential therapeutic value, serving as a vehicle for drugs or nucleic acids that have anti-neoplastic effects. The current application of advanced technology also points to higher-sensitivity detection methods that are minimally invasive. In this review, we discuss the current understanding of the significance of exosomes in prostate cancer and the potential diagnostic value of these EVs in disease progression.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Exosomas/metabolismo , Neoplasias de la Próstata/metabolismo , Animales , Humanos , Biopsia Líquida/métodos , Masculino , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/terapia
12.
Mol Cancer Res ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38648082

RESUMEN

Understanding the mechanisms underlying resistance is critical to improving therapeutic outcomes in patients with metastatic castration-resistant prostate cancer (mCRPC). Previous work showed dynamic interconversions between epithelial-mesenchymal transition (EMT) to mesenchymal-epithelial transition (MET) defines the phenotypic landscape of prostate tumors, as a potential driver of emergence of therapeutic resistance. In this study, we use in vitro and in vivo preclinical MDA PCa PDX models of resistant human prostate cancer to determine molecular mechanisms of cross-resistance between anti-androgen therapy and taxane chemotherapy, underlying the therapeutically resistant phenotype. Transcriptomic profiling revealed that resistant and sensitive prostate cancer C4-2B cells have a unique differential gene signature response to cabazitaxel. Gene pathway analysis showed that sensitive cells exhibit increase in DNA damage, while resistant cells express genes associated with protein regulation in response to cabazitaxel. These PDX specimens are from patients who have metastatic lethal CRPC, treated with androgen-deprivation therapy (ADT), antiandrogens and chemotherapy including 2nd line taxane chemotherapy, cabazitaxel. Immunohistochemistry revealed high expression of E-cadherin and low expression of vimentin resulting in re-differentiation toward an epithelial phenotype. Furthermore, the mitotic kinesin-related protein (HSET) involved in microtubule binding and the SLCO1B3 transporter (implicated in cabazitaxel intracellular transport), associated with resistance in these prostate tumors. Combinational targeting of kinesins (ispinesib) with cabazitaxel was more effective than single monotherapies in inducing cell death in resistant prostate tumors. Implications: Our findings are of translational significance in identifying kinesin as a novel target of cross-resistance, towards enhancing therapeutic vulnerability and improved clinical outcomes in patients with advanced prostate cancer.

13.
Cancer Res Commun ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934093

RESUMEN

PURPOSE: To investigate the cellular and molecular mechanisms associated with targeting CD30-expressing Hodgkin Lymphoma (HL) and immune checkpoint modulation induced by combination therapies of CTLA-4 and PD1. PATIENTS AND METHODS: Phase 1/2, multicenter, open-label, trial NCT01896999 enrolled patients with refractory or relapsed HL (R/R HL) after one or more lines of therapy, with adequate performance status and organ function. Using peripheral blood, we assessed soluble proteins, cell composition, T cell clonality, and tumor antigen-specific antibodies in 54 patients enrolled in the phase 1 component of the trial. RESULTS: NCT01896999 reported high (>75%) overall objective response rates with brentuximab-vedotin (BV) in combination with ipilimumab (I) and/or nivolumab (N) in patients with R/R HL. We observed durable increase in soluble PD-1 and plasmacytoid dendritic cells as well as decreases in plasma CCL17, ANGPT2, MMP12, IL13, and CXCL13 in N-containing regimens (BV+N and BV+I+N) compared with BV+I (p<0.05). Non-responders and patients with short progression free-survival showed elevated CXCL9, CXCL13, CD5, CCL17, adenosine-deaminase, and MUC16 at baseline or after one treatment cycle and a higher prevalence of NY-ESO-1-specific autoantibodies (p<0.05). CONCLUSIONS: The results suggest a circulating tumor-immune-derived signature of BV±I+N treatment resistance that may be useful for patient stratification in combination checkpoint therapy.

14.
Front Immunol ; 15: 1331731, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38384473

RESUMEN

The establishment of a virus infection is the result of the pathogen's ability to replicate in a hostile environment generated by the host's immune system. Here, we found that ISG15 restricts Dengue and Zika viruses' replication through the stabilization of its binding partner USP18. ISG15 expression was necessary to control DV replication driven by both autocrine and paracrine type one interferon (IFN-I) signaling. Moreover, USP18 competes with NS5-mediated STAT2 degradation, a major mechanism for establishment of flavivirus infection. Strikingly, reconstitution of USP18 in ISG15-deficient cells was sufficient to restore the STAT2's stability and restrict virus growth, suggesting that the IFNAR-mediated ISG15 activity is also antiviral. Our results add a novel layer of complexity in the virus/host interaction interface and suggest that NS5 has a narrow window of opportunity to degrade STAT2, therefore suppressing host's IFN-I mediated response and promoting virus replication.


Asunto(s)
Dengue , Interferón Tipo I , Infección por el Virus Zika , Virus Zika , Humanos , Interferón Tipo I/metabolismo , Infección por el Virus Zika/genética , Replicación Viral , Dengue/genética , Ubiquitinas/metabolismo , Citocinas/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Factor de Transcripción STAT2/genética , Factor de Transcripción STAT2/metabolismo
15.
Clin Cancer Res ; 30(8): 1655-1668, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38277235

RESUMEN

PURPOSE: Identifying molecular and immune features to guide immune checkpoint inhibitor (ICI)-based regimens remains an unmet clinical need. EXPERIMENTAL DESIGN: Tissue and longitudinal blood specimens from phase III trial S1400I in patients with metastatic squamous non-small cell carcinoma (SqNSCLC) treated with nivolumab monotherapy (nivo) or nivolumab plus ipilimumab (nivo+ipi) were subjected to multi-omics analyses including multiplex immunofluorescence (mIF), nCounter PanCancer Immune Profiling Panel, whole-exome sequencing, and Olink. RESULTS: Higher immune scores from immune gene expression profiling or immune cell infiltration by mIF were associated with response to ICIs and improved survival, except regulatory T cells, which were associated with worse overall survival (OS) for patients receiving nivo+ipi. Immune cell density and closer proximity of CD8+GZB+ T cells to malignant cells were associated with superior progression-free survival and OS. The cold immune landscape of NSCLC was associated with a higher level of chromosomal copy-number variation (CNV) burden. Patients with LRP1B-mutant tumors had a shorter survival than patients with LRP1B-wild-type tumors. Olink assays revealed soluble proteins such as LAMP3 increased in responders while IL6 and CXCL13 increased in nonresponders. Upregulation of serum CXCL13, MMP12, CSF-1, and IL8 were associated with worse survival before radiologic progression. CONCLUSIONS: The frequency, distribution, and clustering of immune cells relative to malignant ones can impact ICI efficacy in patients with SqNSCLC. High CNV burden may contribute to the cold immune microenvironment. Soluble inflammation/immune-related proteins in the blood have the potential to monitor therapeutic benefit from ICI treatment in patients with SqNSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Nivolumab , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Multiómica , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Inmunoterapia , Pulmón/patología , Células Epiteliales/patología , Ipilimumab/uso terapéutico , Microambiente Tumoral
16.
bioRxiv ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38798338

RESUMEN

Multiple Myeloma (MM) remains incurable despite advances in treatment options. Although tumor subtypes and specific DNA abnormalities are linked to worse prognosis, the impact of immune dysfunction on disease emergence and/or treatment sensitivity remains unclear. We established a harmonized consortium to generate an Immune Atlas of MM aimed at informing disease etiology, risk stratification, and potential therapeutic strategies. We generated a transcriptome profile of 1,149,344 single cells from the bone marrow of 263 newly diagnosed patients enrolled in the CoMMpass study and characterized immune and hematopoietic cell populations. Associating cell abundances and gene expression with disease progression revealed the presence of a proinflammatory immune senescence-associated secretory phenotype in rapidly progressing patients. Furthermore, signaling analyses suggested active intercellular communication involving APRIL-BCMA, potentially promoting tumor growth and survival. Finally, we demonstrate that integrating immune cell levels with genetic information can significantly improve patient stratification.

17.
Front Mol Biosci ; 10: 1156821, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37266331

RESUMEN

Emerging evidence suggests that brain derived extracellular vesicles (EVs) and particles (EPs) can cross blood-brain barrier and mediate communication among neurons, astrocytes, microglial, and other cells of the central nervous system (CNS). Yet, a complete understanding of the molecular landscape and function of circulating EVs & EPs (EVPs) remain a major gap in knowledge. This is mainly due to the lack of technologies to isolate and separate all EVPs of heterogeneous dimensions and low buoyant density. In this review, we aim to provide a comprehensive understanding of the neurosecretome, including the extracellular vesicles that carry the molecular signature of the brain in both its microenvironment and the systemic circulation. We discuss the biogenesis of EVPs, their function, cell-to-cell communication, past and emerging isolation technologies, therapeutics, and liquid-biopsy applications. It is important to highlight that the landscape of EVPs is in a constant state of evolution; hence, we not only discuss the past literature and current landscape of the EVPs, but we also speculate as to how novel EVPs may contribute to the etiology of addiction, depression, psychiatric, neurodegenerative diseases, and aid in the real time monitoring of the "living brain". Overall, the neurosecretome is a concept we introduce here to embody the compendium of circulating particles of the brain for their function and disease pathogenesis. Finally, for the purpose of inclusion of all extracellular particles, we have used the term EVPs as defined by the International Society of Extracellular Vesicles (ISEV).

18.
mBio ; 14(5): e0093423, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37732809

RESUMEN

IMPORTANCE: One of the fundamental features that make viruses intracellular parasites is the necessity to use cellular translational machinery. Hence, this is a crucial checkpoint for controlling infections. Here, we show that dengue and Zika viruses, responsible for nearly 400 million infections every year worldwide, explore such control for optimal replication. Using immunocompetent cells, we demonstrate that arrest of protein translations happens after sensing of dsRNA and that the information required to avoid this blocking is contained in viral 5'-UTR. Our work, therefore, suggests that the non-canonical translation described for these viruses is engaged when the intracellular stress response is activated.


Asunto(s)
Virus del Dengue , Estrés Fisiológico , Replicación Viral , Virus Zika , eIF-2 Quinasa , Animales , Humanos , Células A549 , Chlorocebus aethiops , Dengue/inmunología , Dengue/virología , Virus del Dengue/fisiología , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Eliminación de Gen , Biosíntesis de Proteínas/genética , Biosíntesis de Proteínas/inmunología , Estrés Fisiológico/genética , Estrés Fisiológico/inmunología , Células Vero , Replicación Viral/genética , Replicación Viral/inmunología , Virus Zika/fisiología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología , ARN Bicatenario/metabolismo
19.
Nat Commun ; 14(1): 5335, 2023 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-37660077

RESUMEN

The role of the immune microenvironment in maintaining disease remission in patients with multiple myeloma (MM) is not well understood. In this study, we comprehensively profile the immune system in patients with newly diagnosed MM receiving continuous lenalidomide maintenance therapy with the aim of discovering correlates of long-term treatment response. Leveraging single-cell RNA sequencing and T cell receptor ß sequencing of the peripheral blood and CyTOF mass cytometry of the bone marrow, we longitudinally characterize the immune landscape in 23 patients before and one year after lenalidomide exposure. We compare patients achieving sustained minimal residual disease (MRD) negativity to patients who never achieved or were unable to maintain MRD negativity. We observe that the composition of the immune microenvironment in both the blood and the marrow varied substantially according to both MRD negative status and history of autologous stem cell transplant, supporting the hypothesis that the immune microenvironment influences the depth and duration of treatment response.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Lenalidomida , Inmunofenotipificación , Pacientes , Receptores de Antígenos de Linfocitos T alfa-beta , Microambiente Tumoral
20.
NPJ Genom Med ; 8(1): 3, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36702834

RESUMEN

Despite advancements in understanding the pathophysiology of Multiple Myeloma (MM), the cause of rapid progressing disease in a subset of patients is still unclear. MM's progression is facilitated by complex interactions with the surrounding bone marrow (BM) cells, forming a microenvironment that supports tumor growth and drug resistance. Understanding the immune microenvironment is key to identifying factors that promote rapid progression of MM. To accomplish this, we performed a multi-center single-cell RNA sequencing (scRNA-seq) study on 102,207 cells from 48 CD138- BM samples collected at the time of disease diagnosis from 18 patients with either rapid progressing (progression-free survival (PFS) < 18 months) or non-progressing (PFS > 4 years) disease. Comparative analysis of data from three centers demonstrated similar transcriptome profiles and cell type distributions, indicating subtle technical variation in scRNA-seq, opening avenues for an expanded multicenter trial. Rapid progressors depicted significantly higher enrichment of GZMK+ and TIGIT+ exhausted CD8+ T-cells (P = 0.022) along with decreased expression of cytolytic markers (PRF1, GZMB, GNLY). We also observed a significantly higher enrichment of M2 tolerogenic macrophages in rapid progressors and activation of pro-proliferative signaling pathways, such as BAFF, CCL, and IL16. On the other hand, non-progressive patients depicted higher enrichment for immature B Cells (i.e., Pre/Pro B cells), with elevated expression for markers of B cell development (IGLL1, SOX4, DNTT). This multi-center study identifies the enrichment of various pro-tumorigenic cell populations and pathways in those with rapid progressing disease and further validates the robustness of scRNA-seq data generated at different study centers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA