Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Glob Chang Biol ; 28(2): 509-523, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34713535

RESUMEN

Quantifying the responses of forest disturbances to climate warming is critical to our understanding of carbon cycles and energy balances of the Earth system. The impact of warming on bark beetle outbreaks is complex as multiple drivers of these events may respond differently to warming. Using a novel model of bark beetle biology and host tree interactions, we assessed how contemporary warming affected western pine beetle (Dendroctonus brevicomis) populations and mortality of its host, ponderosa pine (Pinus ponderosa), during an extreme drought in the Sierra Nevada, California, United States. When compared with the field data, our model captured the western pine beetle flight timing and rates of ponderosa pine mortality observed during the drought. In assessing the influence of temperature on western pine beetles, we found that contemporary warming increased the development rate of the western pine beetle and decreased the overwinter mortality rate of western pine beetle larvae leading to increased population growth during periods of lowered tree defense. We attribute a 29.9% (95% CI: 29.4%-30.2%) increase in ponderosa pine mortality during drought directly to increases in western pine beetle voltinism (i.e., associated with increased development rates of western pine beetle) and, to a much lesser extent, reductions in overwintering mortality. These findings, along with other studies, suggest each degree (°C) increase in temperature may have increased the number of ponderosa pine killed by upwards of 35%-40% °C-1 if the effects of compromised tree defenses (15%-20%) and increased western pine beetle populations (20%) are additive. Due to the warming ability to considerably increase mortality through the mechanism of bark beetle populations, models need to consider climate's influence on both host tree stress and the bark beetle population dynamics when determining future levels of tree mortality.


Asunto(s)
Escarabajos , Pinus , Animales , Sequías , Pinus ponderosa , Corteza de la Planta , Árboles
2.
New Phytol ; 225(1): 26-36, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31494935

RESUMEN

Drought has promoted large-scale, insect-induced tree mortality in recent years, with severe consequences for ecosystem function, atmospheric processes, sustainable resources and global biogeochemical cycles. However, the physiological linkages among drought, tree defences, and insect outbreaks are still uncertain, hindering our ability to accurately predict tree mortality under on-going climate change. Here we propose an interdisciplinary research agenda for addressing these crucial knowledge gaps. Our framework includes field manipulations, laboratory experiments, and modelling of insect and vegetation dynamics, and focuses on how drought affects interactions between conifer trees and bark beetles. We build upon existing theory and examine several key assumptions: (1) there is a trade-off in tree carbon investment between primary and secondary metabolites (e.g. growth vs defence); (2) secondary metabolites are one of the main component of tree defence against bark beetles and associated microbes; and (3) implementing conifer-bark beetle interactions in current models improves predictions of forest disturbance in a changing climate. Our framework provides guidance for addressing a major shortcoming in current implementations of large-scale vegetation models, the under-representation of insect-induced tree mortality.


Asunto(s)
Carbono/metabolismo , Escarabajos/fisiología , Enfermedades de las Plantas/parasitología , Árboles/fisiología , Animales , Cambio Climático , Simulación por Computador , Sequías , Ecosistema , Bosques , Modelos Teóricos , Corteza de la Planta/inmunología , Corteza de la Planta/parasitología , Corteza de la Planta/fisiología , Árboles/inmunología , Árboles/parasitología
3.
Plant Cell Environ ; 42(5): 1705-1714, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30537216

RESUMEN

Nonstructural carbohydrates (NSCs) are essential for maintenance of plant metabolism and may be sensitive to short- and long-term climatic variation. NSC variation in moist tropical forests has rarely been studied, so regulation of NSCs in these systems is poorly understood. We measured foliar and branch NSC content in 23 tree species at three sites located across a large precipitation gradient in Panama during the 2015-2016 El Niño to examine how short- and long-term climatic variation impact carbohydrate dynamics. There was no significant difference in total NSCs as the drought progressed (leaf P = 0.32, branch P = 0.30) nor across the rainfall gradient (leaf P = 0.91, branch P = 0.96). Foliar soluble sugars decreased while starch increased over the duration of the dry period, suggesting greater partitioning of NSCs to storage than metabolism or transport as drought progressed. There was a large variation across species at all sites, but total foliar NSCs were positively correlated with leaf mass per area, whereas branch sugars were positively related to leaf temperature and negatively correlated with daily photosynthesis and wood density. The NSC homoeostasis across a wide range of conditions suggests that NSCs are an allocation priority in moist tropical forests.


Asunto(s)
Sequías , El Niño Oscilación del Sur , Almidón/metabolismo , Azúcares/metabolismo , Árboles/metabolismo , Carbohidratos/fisiología , Bosques , Panamá , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Estaciones del Año , Clima Tropical , Madera/metabolismo
4.
New Phytol ; 219(3): 851-869, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29451313

RESUMEN

Tree mortality rates appear to be increasing in moist tropical forests (MTFs) with significant carbon cycle consequences. Here, we review the state of knowledge regarding MTF tree mortality, create a conceptual framework with testable hypotheses regarding the drivers, mechanisms and interactions that may underlie increasing MTF mortality rates, and identify the next steps for improved understanding and reduced prediction. Increasing mortality rates are associated with rising temperature and vapor pressure deficit, liana abundance, drought, wind events, fire and, possibly, CO2 fertilization-induced increases in stand thinning or acceleration of trees reaching larger, more vulnerable heights. The majority of these mortality drivers may kill trees in part through carbon starvation and hydraulic failure. The relative importance of each driver is unknown. High species diversity may buffer MTFs against large-scale mortality events, but recent and expected trends in mortality drivers give reason for concern regarding increasing mortality within MTFs. Models of tropical tree mortality are advancing the representation of hydraulics, carbon and demography, but require more empirical knowledge regarding the most common drivers and their subsequent mechanisms. We outline critical datasets and model developments required to test hypotheses regarding the underlying causes of increasing MTF mortality rates, and improve prediction of future mortality under climate change.


Asunto(s)
Bosques , Humedad , Árboles/fisiología , Clima Tropical , Dióxido de Carbono/metabolismo , Modelos Teóricos
5.
Glob Chang Biol ; 24(8): 3620-3628, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29808947

RESUMEN

Warmer climates are predicted to increase bark beetle outbreak frequency, severity, and range. Even in favorable climates, however, outbreaks can decelerate due to resource limitation, which necessitates the inclusion of competition for limited resources in analyses of climatic effects on populations. We evaluated several hypotheses of how climate impacts mountain pine beetle reproduction using an extensive 9-year dataset, in which nearly 10,000 trees were sampled across a region of approximately 90,000 km2 , that was recently invaded by the mountain pine beetle in Alberta, Canada. Our analysis supports the hypothesis of a positive effect of warmer winter temperatures on mountain pine beetle overwinter survival and provides evidence that the increasing trend in minimum winter temperatures over time in North America is an important driver of increased mountain pine beetle reproduction across the region. Although we demonstrate a consistent effect of warmer minimum winter temperatures on mountain pine beetle reproductive rates that is evident at the landscape and regional scales, this effect is overwhelmed by the effect of competition for resources within trees at the site level. Our results suggest that detection of the effects of a warming climate on bark beetle populations at small spatial scales may be difficult without accounting for negative density dependence due to competition for resources.


Asunto(s)
Escarabajos/fisiología , Alberta , Animales , Escarabajos/clasificación , Conducta Competitiva , Monitoreo del Ambiente , Hipertelorismo , Discapacidad Intelectual , Cifosis , Megalencefalia , Modelos Biológicos , Dinámica Poblacional , Estaciones del Año , Temperatura , Lengua/anomalías , Árboles
6.
Theor Popul Biol ; 98: 1-10, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25201435

RESUMEN

As researchers collect spatiotemporal population and genetic data in tandem, models that connect demography and dispersal to genetics are increasingly relevant. The dominant spatiotemporal model of invasion genetics is the stepping-stone model which represents a gradual range expansion in which individuals jump to uncolonized locations one step at a time. However, many range expansions occur quickly as individuals disperse far from currently colonized regions. For these types of expansion, stepping-stone models are inappropriate. To more accurately reflect wider dispersal in many organisms, we created kernel-based models of invasion genetics based on integrodifference equations. Classic theory relating to integrodifference equations suggests that the speed of range expansions is a function of population growth and dispersal. In our simulations, populations that expanded at the same speed but with spread rates driven by dispersal retained more heterozygosity along axes of expansion than range expansions with rates of spread that were driven primarily by population growth. To investigate surfing we introduced mutant alleles in wave fronts of simulated range expansions. In our models based on random mating, surfing alleles remained at relatively low frequencies and surfed less often compared to previous results based on stepping-stone simulations with asexual reproduction.


Asunto(s)
Genética de Población/métodos , Pérdida de Heterocigocidad/genética , Modelos Genéticos , Reproducción/genética , Algoritmos , Alelos , Animales , Simulación por Computador , Demografía/métodos , Variación Genética , Modelos Estadísticos , Mutación , Dinámica Poblacional , Reproducción Asexuada/genética
7.
New Phytol ; 197(2): 586-594, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23157572

RESUMEN

If carbon (C) sinks withdraw carbohydrates as they are transported along tree stems, carbohydrate availability may depend on local sink strength and distance from sources. Defenses, including monoterpenes--a major component of resin--limit the invasibility of pines. Since carbohydrate reserves fund monoterpene synthesis, we hypothesized that monoterpene concentrations in pine stems would decrease from the crown to the lower stem, and susceptibility to fungal infection would increase. Here, we measured carbohydrate and monoterpene concentrations along the stems of lodgepole pine trees (Pinus contorta var. latifolia) before inoculating with a blue-stain fungus at different heights. After 6 wk, we assessed tree responses to fungal infection based on lesion length and carbohydrate mobilization. Concentrations of carbohydrates and monoterpenes in the phloem before inoculation decreased with distance from the crown, whereas lesion lengths after inoculation increased. However, trees mobilized sugars in response to fungal infection such that carbohydrate reserves near lesions were similar at all heights. Despite C mobilization, the lower stem was more vulnerable than the upper stem. Consistent with predictions based on sink-source relationships, vulnerability occurred where carbohydrates were less available, and likely resulted from C withdrawal by sinks higher in the supply chain.


Asunto(s)
Ascomicetos/fisiología , Carbono/metabolismo , Pinus/inmunología , Pinus/microbiología , Tallos de la Planta/microbiología , Árboles/inmunología , Árboles/microbiología , Metabolismo de los Hidratos de Carbono , Monoterpenos/metabolismo , Pinus/metabolismo , Tallos de la Planta/inmunología , Tallos de la Planta/metabolismo , Estaciones del Año , Solubilidad , Almidón/metabolismo , Árboles/metabolismo
8.
Ecol Evol ; 8(1): 162-175, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29321860

RESUMEN

Phenology models are becoming increasingly important tools to accurately predict how climate change will impact the life histories of organisms. We propose a class of integral projection phenology models derived from stochastic individual-based models of insect development and demography. Our derivation, which is based on the rate summation concept, produces integral projection models that capture the effect of phenotypic rate variability on insect phenology, but which are typically more computationally frugal than equivalent individual-based phenology models. We demonstrate our approach using a temperature-dependent model of the demography of the mountain pine beetle (Dendroctonus ponderosae Hopkins), an insect that kills mature pine trees. This work illustrates how a wide range of stochastic phenology models can be reformulated as integral projection models. Due to their computational efficiency, these integral projection models are suitable for deployment in large-scale simulations, such as studies of altered pest distributions under climate change.

9.
Environ Entomol ; 41(3): 478-86, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22732605

RESUMEN

In the low nutrient environment of conifer bark, subcortical beetles often carry symbiotic fungi that concentrate nutrients in host tissues. Although bark beetles are known to benefit from these symbioses, whether this is because they survive better in nutrient-rich phloem is unknown. After manipulating phloem nutrition by fertilizing lodgepole pine trees (Pinus contorta Douglas var. latifolia), we found bolts from fertilized trees to contain more living individuals, and especially more pupae and teneral adults than bolts from unfertilized trees at our southern site. At our northern site, we found that a larger proportion of mountain pine beetle (Dendroctonus ponderosae Hopkins) larvae built pupal chambers in bolts from fertilized trees than in bolts from unfertilized trees. The symbiotic fungi of the mountain pine beetle also responded to fertilization. Two mutualistic fungi of bark beetles, Grosmannia clavigera (Rob.-Jeffr. & R. W. Davidson) Zipfel, Z. W. de Beer, & M. J. Wingf. and Leptographium longiclavatum Lee, S., J. J. Kim, & C. Breuil, doubled the nitrogen concentrations near the point of infection in the phloem of fertilized trees. These fungi were less capable of concentrating nitrogen in unfertilized trees. Thus, the fungal symbionts of mountain pine beetle enhance phloem nutrition and likely mediate the beneficial effects of fertilization on the survival and development of mountain pine beetle larvae.


Asunto(s)
Ophiostomatales/fisiología , Pinus/química , Simbiosis , Gorgojos/fisiología , Alberta , Animales , Femenino , Fertilizantes , Cadena Alimentaria , Larva/fisiología , Metabolismo de los Lípidos , Masculino , Nitrógeno/metabolismo , Floema/química , Dinámica Poblacional , Estaciones del Año , Especificidad de la Especie , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA