Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 337
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 112(14): 4251-6, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25831533

RESUMEN

Understanding the evolution of the free-living, cyanobacterial, diazotroph Trichodesmium is of great importance because of its critical role in oceanic biogeochemistry and primary production. Unlike the other >150 available genomes of free-living cyanobacteria, only 63.8% of the Trichodesmium erythraeum (strain IMS101) genome is predicted to encode protein, which is 20-25% less than the average for other cyanobacteria and nonpathogenic, free-living bacteria. We use distinctive isolates and metagenomic data to show that low coding density observed in IMS101 is a common feature of the Trichodesmium genus, both in culture and in situ. Transcriptome analysis indicates that 86% of the noncoding space is expressed, although the function of these transcripts is unclear. The density of noncoding, possible regulatory elements predicted in Trichodesmium, when normalized per intergenic kilobase, was comparable and twofold higher than that found in the gene-dense genomes of the sympatric cyanobacterial genera Synechococcus and Prochlorococcus, respectively. Conserved Trichodesmium noncoding RNA secondary structures were predicted between most culture and metagenomic sequences, lending support to the structural conservation. Conservation of these intergenic regions in spatiotemporally separated Trichodesmium populations suggests possible genus-wide selection for their maintenance. These large intergenic spacers may have developed during intervals of strong genetic drift caused by periodic blooms of a subset of genotypes, which may have reduced effective population size. Our data suggest that transposition of selfish DNA, low effective population size, and high-fidelity replication allowed the unusual "inflation" of noncoding sequence observed in Trichodesmium despite its oligotrophic lifestyle.


Asunto(s)
Cianobacterias/genética , Cianobacterias/fisiología , ADN Bacteriano/química , Proteínas Bacterianas/química , Carbono/química , Biología Computacional , ADN Bacteriano/genética , ADN Intergénico/genética , Ecosistema , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Genoma , Genómica , Datos de Secuencia Molecular , Nitrógeno/química , Fijación del Nitrógeno/genética , Conformación de Ácido Nucleico , Océanos y Mares , Prochlorococcus/genética , ARN/química , ARN/genética , Transducción de Señal , Synechococcus/genética , Transposasas/metabolismo
2.
Proc Natl Acad Sci U S A ; 110(3): 1053-8, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23277585

RESUMEN

The cyanobacterial phylum encompasses oxygenic photosynthetic prokaryotes of a great breadth of morphologies and ecologies; they play key roles in global carbon and nitrogen cycles. The chloroplasts of all photosynthetic eukaryotes can trace their ancestry to cyanobacteria. Cyanobacteria also attract considerable interest as platforms for "green" biotechnology and biofuels. To explore the molecular basis of their different phenotypes and biochemical capabilities, we sequenced the genomes of 54 phylogenetically and phenotypically diverse cyanobacterial strains. Comparison of cyanobacterial genomes reveals the molecular basis for many aspects of cyanobacterial ecophysiological diversity, as well as the convergence of complex morphologies without the acquisition of novel proteins. This phylum-wide study highlights the benefits of diversity-driven genome sequencing, identifying more than 21,000 cyanobacterial proteins with no detectable similarity to known proteins, and foregrounds the diversity of light-harvesting proteins and gene clusters for secondary metabolite biosynthesis. Additionally, our results provide insight into the distribution of genes of cyanobacterial origin in eukaryotic nuclear genomes. Moreover, this study doubles both the amount and the phylogenetic diversity of cyanobacterial genome sequence data. Given the exponentially growing number of sequenced genomes, this diversity-driven study demonstrates the perspective gained by comparing disparate yet related genomes in a phylum-wide context and the insights that are gained from it.


Asunto(s)
Cianobacterias/clasificación , Cianobacterias/genética , Genoma Bacteriano , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión a Clorofila/química , Proteínas de Unión a Clorofila/genética , Proteínas de Unión a Clorofila/metabolismo , Cianobacterias/metabolismo , Evolución Molecular , Variación Genética , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Familia de Multigenes , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema I/metabolismo , Filogenia , Plastidios/genética , Homología de Secuencia de Aminoácido
3.
J Bacteriol ; 197(5): 893-904, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25512312

RESUMEN

Desulfitobacterium dehalogenans is able to grow by organohalide respiration using 3-chloro-4-hydroxyphenyl acetate (Cl-OHPA) as an electron acceptor. We used a combination of genome sequencing, biochemical analysis of redox active components, and shotgun proteomics to study elements of the organohalide respiratory electron transport chain. The genome of Desulfitobacterium dehalogenans JW/IU-DC1(T) consists of a single circular chromosome of 4,321,753 bp with a GC content of 44.97%. The genome contains 4,252 genes, including six rRNA operons and six predicted reductive dehalogenases. One of the reductive dehalogenases, CprA, is encoded by a well-characterized cprTKZEBACD gene cluster. Redox active components were identified in concentrated suspensions of cells grown on formate and Cl-OHPA or formate and fumarate, using electron paramagnetic resonance (EPR), visible spectroscopy, and high-performance liquid chromatography (HPLC) analysis of membrane extracts. In cell suspensions, these components were reduced upon addition of formate and oxidized after addition of Cl-OHPA, indicating involvement in organohalide respiration. Genome analysis revealed genes that likely encode the identified components of the electron transport chain from formate to fumarate or Cl-OHPA. Data presented here suggest that the first part of the electron transport chain from formate to fumarate or Cl-OHPA is shared. Electrons are channeled from an outward-facing formate dehydrogenase via menaquinones to a fumarate reductase located at the cytoplasmic face of the membrane. When Cl-OHPA is the terminal electron acceptor, electrons are transferred from menaquinones to outward-facing CprA, via an as-yet-unidentified membrane complex, and potentially an extracellular flavoprotein acting as an electron shuttle between the quinol dehydrogenase membrane complex and CprA.


Asunto(s)
Desulfitobacterium/genética , Desulfitobacterium/metabolismo , Genómica , Halógenos/metabolismo , Proteómica , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Desulfitobacterium/química , Desulfitobacterium/enzimología , Transporte de Electrón , Formiatos/metabolismo , Fumaratos/metabolismo , Genoma Bacteriano , Datos de Secuencia Molecular , Operón
4.
Environ Microbiol ; 17(3): 547-54, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25683159

RESUMEN

We sequenced the genomes of 19 methylotrophic isolates from Lake Washington, which belong to nine genera within eight families of the Alphaproteobacteria, two of the families being the newly proposed families. Comparative genomic analysis with a focus on methylotrophy metabolism classifies these strains into heterotrophic and obligately or facultatively autotrophic methylotrophs. The most persistent metabolic modules enabling methylotrophy within this group are the N-methylglutamate pathway, the two types of methanol dehydrogenase (MxaFI and XoxF), the tetrahydromethanopterin pathway for formaldehyde oxidation, the serine cycle and the ethylmalonyl-CoA pathway. At the same time, a great potential for metabolic flexibility within this group is uncovered, with different combinations of these modules present. Phylogenetic analysis of key methylotrophy functions reveals that the serine cycle must have evolved independently in at least four lineages of Alphaproteobacteria and that all methylotrophy modules seem to be prone to lateral transfers as well as deletions.


Asunto(s)
Acilcoenzima A/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Alphaproteobacteria/metabolismo , Glutamatos/metabolismo , Lagos/microbiología , Serina/metabolismo , Oxidorreductasas de Alcohol/genética , Alphaproteobacteria/clasificación , Alphaproteobacteria/genética , Secuencia de Bases , Formaldehído/metabolismo , Genómica , Sedimentos Geológicos/microbiología , Metiltransferasas/metabolismo , Filogenia , Análisis de Secuencia de ADN , Washingtón
5.
Environ Microbiol ; 17(12): 4861-72, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24589017

RESUMEN

How aromatic compounds are degraded in various anaerobic ecosystems (e.g. groundwater, sediments, soils and wastewater) is currently poorly understood. Under methanogenic conditions (i.e. groundwater and wastewater treatment), syntrophic metabolizers are known to play an important role. This study explored the draft genome of Syntrophorhabdus aromaticivorans strain UI and identified the first syntrophic phenol-degrading phenylphosphate synthase (PpsAB) and phenylphosphate carboxylase (PpcABCD) and syntrophic terephthalate-degrading decarboxylase complexes. The strain UI genome also encodes benzoate degradation through hydration of the dienoyl-coenzyme A intermediate as observed in Geobacter metallireducens and Syntrophus aciditrophicus. Strain UI possesses electron transfer flavoproteins, hydrogenases and formate dehydrogenases essential for syntrophic metabolism. However, the biochemical mechanisms for electron transport between these H2 /formate-generating proteins and syntrophic substrate degradation remain unknown for many syntrophic metabolizers, including strain UI. Analysis of the strain UI genome revealed that heterodisulfide reductases (HdrABC), which are poorly understood electron transfer genes, may contribute to syntrophic H2 and formate generation. The genome analysis further identified a putative ion-translocating ferredoxin : NADH oxidoreductase (IfoAB) that may interact with HdrABC and dissimilatory sulfite reductase gamma subunit (DsrC) to perform novel electron transfer mechanisms associated with syntrophic metabolism.


Asunto(s)
Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Transporte de Electrón/fisiología , Anaerobiosis/fisiología , Liasas de Carbono-Carbono/metabolismo , Carboxiliasas/metabolismo , Deltaproteobacteria/clasificación , Electrones , Ferredoxinas/metabolismo , Formiato Deshidrogenasas/metabolismo , Formiatos/metabolismo , Genoma Bacteriano/genética , Hidrogenasas/metabolismo , Oxidorreductasas/metabolismo , Fenol/metabolismo
6.
Microbiology (Reading) ; 161(8): 1572-1581, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25998264

RESUMEN

Analysis of the genome sequence of Methanoregula boonei strain 6A8, an acidophilic methanogen isolated from an ombrotrophic (rain-fed) peat bog, has revealed unique features that likely allow it to survive in acidic, nutrient-poor conditions. First, M. boonei is predicted to generate ATP using protons that are abundant in peat, rather than sodium ions that are scarce, and the sequence of a membrane-bound methyltransferase, believed to pump Na+ in all methanogens, shows differences in key amino acid residues. Further, perhaps reflecting the hypokalemic status of many peat bogs, M. boonei demonstrates redundancy in the predicted potassium uptake genes trk, kdp and kup, some of which may have been horizontally transferred to methanogens from bacteria, possibly Geobacter spp. Overall, the putative functions of the potassium uptake, ATPase and methyltransferase genes may, at least in part, explain the cosmopolitan success of group E1/E2 and related methanogenic archaea in acidic peat bogs.


Asunto(s)
Genoma Bacteriano , Methanomicrobiales/fisiología , Microbiología del Suelo , Adaptación Fisiológica , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Concentración de Iones de Hidrógeno , Metano/metabolismo , Methanomicrobiales/clasificación , Methanomicrobiales/genética , Methanomicrobiales/aislamiento & purificación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Filogenia , Suelo/química
7.
Nature ; 462(7276): 1056-60, 2009 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-20033048

RESUMEN

Sequencing of bacterial and archaeal genomes has revolutionized our understanding of the many roles played by microorganisms. There are now nearly 1,000 completed bacterial and archaeal genomes available, most of which were chosen for sequencing on the basis of their physiology. As a result, the perspective provided by the currently available genomes is limited by a highly biased phylogenetic distribution. To explore the value added by choosing microbial genomes for sequencing on the basis of their evolutionary relationships, we have sequenced and analysed the genomes of 56 culturable species of Bacteria and Archaea selected to maximize phylogenetic coverage. Analysis of these genomes demonstrated pronounced benefits (compared to an equivalent set of genomes randomly selected from the existing database) in diverse areas including the reconstruction of phylogenetic history, the discovery of new protein families and biological properties, and the prediction of functions for known genes from other organisms. Our results strongly support the need for systematic 'phylogenomic' efforts to compile a phylogeny-driven 'Genomic Encyclopedia of Bacteria and Archaea' in order to derive maximum knowledge from existing microbial genome data as well as from genome sequences to come.


Asunto(s)
Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Genoma Arqueal/genética , Genoma Bacteriano/genética , Filogenia , Actinas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Biodiversidad , Bases de Datos Genéticas , Genes de ARNr/genética , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia
8.
Appl Environ Microbiol ; 79(12): 3724-33, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23563954

RESUMEN

Sphingomonads comprise a physiologically versatile group within the Alphaproteobacteria that includes strains of interest for biotechnology, human health, and environmental nutrient cycling. In this study, we compared 26 sphingomonad genome sequences to gain insight into their ecology, metabolic versatility, and environmental adaptations. Our multilocus phylogenetic and average amino acid identity (AAI) analyses confirm that Sphingomonas, Sphingobium, Sphingopyxis, and Novosphingobium are well-resolved monophyletic groups with the exception of Sphingomonas sp. strain SKA58, which we propose belongs to the genus Sphingobium. Our pan-genomic analysis of sphingomonads reveals numerous species-specific open reading frames (ORFs) but few signatures of genus-specific cores. The organization and coding potential of the sphingomonad genomes appear to be highly variable, and plasmid-mediated gene transfer and chromosome-plasmid recombination, together with prophage- and transposon-mediated rearrangements, appear to play prominent roles in the genome evolution of this group. We find that many of the sphingomonad genomes encode numerous oxygenases and glycoside hydrolases, which are likely responsible for their ability to degrade various recalcitrant aromatic compounds and polysaccharides, respectively. Many of these enzymes are encoded on megaplasmids, suggesting that they may be readily transferred between species. We also identified enzymes putatively used for the catabolism of sulfonate and nitroaromatic compounds in many of the genomes, suggesting that plant-based compounds or chemical contaminants may be sources of nitrogen and sulfur. Many of these sphingomonads appear to be adapted to oligotrophic environments, but several contain genomic features indicative of host associations. Our work provides a basis for understanding the ecological strategies employed by sphingomonads and their role in environmental nutrient cycling.


Asunto(s)
Adaptación Biológica/genética , Ambiente , Genoma Bacteriano/genética , Isópteros/microbiología , Filogenia , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Biodegradación Ambiental , Análisis por Conglomerados , Modelos Genéticos , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Puerto Rico , Análisis de Secuencia de ADN , Sudáfrica , Sphingomonadaceae/enzimología
9.
Appl Environ Microbiol ; 79(12): 3770-8, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23584789

RESUMEN

Plants represent a large reservoir of organic carbon comprised primarily of recalcitrant polymers that most metazoans are unable to deconstruct. Many herbivores gain access to nutrients in this material indirectly by associating with microbial symbionts, and leaf-cutter ants are a paradigmatic example. These ants use fresh foliar biomass as manure to cultivate gardens composed primarily of Leucoagaricus gongylophorus, a basidiomycetous fungus that produces specialized hyphal swellings that serve as a food source for the host ant colony. Although leaf-cutter ants are conspicuous herbivores that contribute substantially to carbon turnover in Neotropical ecosystems, the process through which plant biomass is degraded in their fungus gardens is not well understood. Here we present the first draft genome of L. gongylophorus, and, using genomic and metaproteomic tools, we investigate its role in lignocellulose degradation in the gardens of both Atta cephalotes and Acromyrmex echinatior leaf-cutter ants. We show that L. gongylophorus produces a diversity of lignocellulases in ant gardens and is likely the primary driver of plant biomass degradation in these ecosystems. We also show that this fungus produces distinct sets of lignocellulases throughout the different stages of biomass degradation, including numerous cellulases and laccases that likely play an important role in lignocellulose degradation. Our study provides a detailed analysis of plant biomass degradation in leaf-cutter ant fungus gardens and insight into the enzymes underlying the symbiosis between these dominant herbivores and their obligate fungal cultivar.


Asunto(s)
Agaricales/enzimología , Hormigas/fisiología , Celulasas/genética , Genoma Fúngico/genética , Simbiosis/fisiología , Agaricales/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Celulasas/metabolismo , Análisis por Conglomerados , Herbivoria/fisiología , Lignina/metabolismo , Datos de Secuencia Molecular , Panamá , Filogenia , Plantas/metabolismo , Proteómica , Análisis de Secuencia de ADN , Homología de Secuencia , Especificidad de la Especie
10.
PLoS Genet ; 6(9): e1001129, 2010 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-20885794

RESUMEN

Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome's predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.


Asunto(s)
Hormigas/microbiología , Biomasa , Conducta Alimentaria/fisiología , Hongos/genética , Metagenoma/genética , Hojas de la Planta/metabolismo , Animales , Biopolímeros/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Bovinos , Análisis por Conglomerados , Datos de Secuencia Molecular , Filogenia
11.
J Bacteriol ; 194(11): 3020-1, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22582378

RESUMEN

Rahnella aquatilis CIP 78.65 is a gammaproteobacterium isolated from a drinking water source in Lille, France. Here we report the complete genome sequence of Rahnella aquatilis CIP 78.65, the type strain of R. aquatilis.


Asunto(s)
Agua Potable/microbiología , Genoma Bacteriano , Rahnella/genética , Secuencia de Bases , Francia , Datos de Secuencia Molecular , Rahnella/clasificación , Rahnella/aislamiento & purificación
12.
J Bacteriol ; 194(9): 2396-7, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22493203

RESUMEN

We announce the availability of a high-quality draft of the genome sequence of Amycolatopsis sp. strain 39116, one of few bacterial species that are known to consume the lignin component of plant biomass. This genome sequence will further ongoing efforts to use microorganisms for the conversion of plant biomass into fuels and high-value chemicals.


Asunto(s)
Actinobacteria/clasificación , Actinobacteria/genética , Biomasa , Genoma Bacteriano , Plantas , Actinobacteria/metabolismo , Biodegradación Ambiental , Cromosomas Bacterianos , ADN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica , Datos de Secuencia Molecular
13.
J Bacteriol ; 194(8): 2113-4, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22461551

RESUMEN

Rahnella sp. strain Y9602 is a gammaproteobacterium isolated from contaminated subsurface soils that is capable of promoting uranium phosphate mineralization as a result of constitutive phosphatase activity. Here we report the first complete genome sequence of an isolate belonging to the genus Rahnella.


Asunto(s)
Genoma Bacteriano , Metales/química , Radioisótopos/química , Rahnella/genética , Microbiología del Suelo , Secuencia de Bases , Datos de Secuencia Molecular , Rahnella/clasificación , Contaminantes del Suelo/química
14.
J Bacteriol ; 194(21): 5966-7, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23045486

RESUMEN

Zymomonas mobilis is an ethanologenic bacterium that has been studied for use in biofuel production. Of the sequenced Zymomonas strains, ATCC 29191 has been described as the phenotypic centrotype of Zymomonas mobilis subsp. mobilis, the taxon that harbors the highest ethanol-producing Z. mobilis strains. ATCC 29191 was isolated in Kinshasa, Congo, from palm wine fermentations. This strain is reported to be a robust levan producer, while in recent years it has been employed in studies addressing Z. mobilis respiration. Here we announce the finishing and annotation of the ATCC 29191 genome, which comprises one chromosome and three plasmids.


Asunto(s)
ADN Bacteriano/química , ADN Bacteriano/genética , Etanol/metabolismo , Genoma Bacteriano , Análisis de Secuencia de ADN , Zymomonas/genética , Zymomonas/metabolismo , Congo , Fermentación , Fructanos/metabolismo , Redes y Vías Metabólicas , Datos de Secuencia Molecular , Oxidación-Reducción , Plásmidos , Vino/microbiología , Zymomonas/aislamiento & purificación
15.
J Bacteriol ; 194(10): 2744-5, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22535930

RESUMEN

Microbial communities in the termite hindgut are essential for degrading plant material. We present the high-quality draft genome sequence of the Opitutaceae bacterium strain TAV1, the first member of the phylum Verrucomicrobia to be isolated from wood-feeding termites. The genomic analysis reveals genes coding for lignocellulosic degradation and nitrogen fixation.


Asunto(s)
Genoma Bacteriano , Isópteros/microbiología , Simbiosis/fisiología , Verrucomicrobia/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Datos de Secuencia Molecular
16.
J Bacteriol ; 194(20): 5703-4, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23012283

RESUMEN

Desulfurococcus fermentans is the first known cellulolytic archaeon. This hyperthermophilic and strictly anaerobic crenarchaeon produces hydrogen from fermentation of various carbohydrates and peptides without inhibition by accumulating hydrogen. The complete genome sequence reported here suggested that D. fermentans employs membrane-bound hydrogenases and novel glycohydrolases for hydrogen production from cellulose.


Asunto(s)
ADN de Archaea/química , ADN de Archaea/genética , Desulfurococcaceae/genética , Genoma Arqueal , Análisis de Secuencia de ADN , Anaerobiosis , Metabolismo de los Hidratos de Carbono , Celulosa/metabolismo , Desulfurococcaceae/aislamiento & purificación , Desulfurococcaceae/fisiología , Fermentación , Agua Dulce/microbiología , Manantiales de Aguas Termales/microbiología , Hidrógeno/metabolismo , Datos de Secuencia Molecular , Federación de Rusia
18.
J Bacteriol ; 194(21): 5974-5, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23045491

RESUMEN

Marinitoga piezophila KA3 is a thermophilic, anaerobic, chemoorganotrophic, sulfur-reducing bacterium isolated from the Grandbonum deep-sea hydrothermal vent site at the East Pacific Rise (13°N, 2,630-m depth). The genome of M. piezophila KA3 comprises a 2,231,407-bp circular chromosome and a 13,386-bp circular plasmid. This genome was sequenced within Department of Energy Joint Genome Institute CSP 2010.


Asunto(s)
Bacterias/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Genoma Bacteriano , Análisis de Secuencia de ADN , Anaerobiosis , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Cromosomas Bacterianos , Respiraderos Hidrotermales/microbiología , Datos de Secuencia Molecular , Compuestos Orgánicos/metabolismo , Oxidación-Reducción , Océano Pacífico , Plásmidos , Agua de Mar/microbiología , Azufre/metabolismo , Temperatura
19.
J Bacteriol ; 194(22): 6300-1, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23105050

RESUMEN

Desulfosporosinus species are sulfate-reducing bacteria belonging to the Firmicutes. Their genomes will give insights into the genetic repertoire and evolution of sulfate reducers typically thriving in terrestrial environments and able to degrade toluene (Desulfosporosinus youngiae), to reduce Fe(III) (Desulfosporosinus meridiei, Desulfosporosinus orientis), and to grow under acidic conditions (Desulfosporosinus acidiphilus).


Asunto(s)
Genoma Bacteriano , Peptococcaceae/clasificación , Peptococcaceae/genética , ADN Bacteriano/genética , Datos de Secuencia Molecular , Especificidad de la Especie
20.
BMC Genomics ; 13: 165, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22559199

RESUMEN

BACKGROUND: Natrialba magadii is an aerobic chemoorganotrophic member of the Euryarchaeota and is a dual extremophile requiring alkaline conditions and hypersalinity for optimal growth. The genome sequence of Nab. magadii type strain ATCC 43099 was deciphered to obtain a comprehensive insight into the genetic content of this haloarchaeon and to understand the basis of some of the cellular functions necessary for its survival. RESULTS: The genome of Nab. magadii consists of four replicons with a total sequence of 4,443,643 bp and encodes 4,212 putative proteins, some of which contain peptide repeats of various lengths. Comparative genome analyses facilitated the identification of genes encoding putative proteins involved in adaptation to hypersalinity, stress response, glycosylation, and polysaccharide biosynthesis. A proton-driven ATP synthase and a variety of putative cytochromes and other proteins supporting aerobic respiration and electron transfer were encoded by one or more of Nab. magadii replicons. The genome encodes a number of putative proteases/peptidases as well as protein secretion functions. Genes encoding putative transcriptional regulators, basal transcription factors, signal perception/transduction proteins, and chemotaxis/phototaxis proteins were abundant in the genome. Pathways for the biosynthesis of thiamine, riboflavin, heme, cobalamin, coenzyme F420 and other essential co-factors were deduced by in depth sequence analyses. However, approximately 36% of Nab. magadii protein coding genes could not be assigned a function based on Blast analysis and have been annotated as encoding hypothetical or conserved hypothetical proteins. Furthermore, despite extensive comparative genomic analyses, genes necessary for survival in alkaline conditions could not be identified in Nab. magadii. CONCLUSIONS: Based on genomic analyses, Nab. magadii is predicted to be metabolically versatile and it could use different carbon and energy sources to sustain growth. Nab. magadii has the genetic potential to adapt to its milieu by intracellular accumulation of inorganic cations and/or neutral organic compounds. The identification of Nab. magadii genes involved in coenzyme biosynthesis is a necessary step toward further reconstruction of the metabolic pathways in halophilic archaea and other extremophiles. The knowledge gained from the genome sequence of this haloalkaliphilic archaeon is highly valuable in advancing the applications of extremophiles and their enzymes.


Asunto(s)
Genómica , Halobacteriaceae/genética , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Mapeo Cromosómico , Cromosomas de Archaea , Coenzimas/biosíntesis , Genoma Arqueal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA