Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Langmuir ; 40(20): 10623-10633, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38726951

RESUMEN

Mixed A/B polyelectrolyte (PE) brushes of opposite charges are grown from a Y-shaped initiator-bearing coating to facilitate intimate mixing of the A and B polyelectrolytes in a 1:1 grafting ratio. The design of the Y-shaped inimer includes both ATRP and NMP initiators attached to a common Y-junction. A copolymer of a Y-shaped inimer with glycidyl methacrylate is cross-linked to the substrate resulting in a stable ultrathin coating decorated with Y-shaped initiators. Weak PE A/B mixed brushes based on poly(methacrylic acid)/poly(2-vinylpyridine) (PMAA/P2VP) with a high grafting density of ∼1 chain/nm2 are grown by surface-initiated ATRP and NMP, respectively. Detailed morphological characterization of the PMAA/P2VP brushes in response to pH changes reveals a nanoporous morphology under conditions that maximize complex coacervate formation between oppositely charged brushes. The charge ratio between the A and B brushes is varied via the composition of the brushes to further study the morphology evolution. The effect of intimate contact between the A and B brushes on the morphology is probed by comparing with a mixed A/B PE system with random fluctuations in grafting composition. A quantitative and qualitative study of the pore evolution with pH as well as charge composition is presented using a combination of atomic force microscopy, water contact angle measurement, and image analysis using Gwyddion software. These studies demonstrate that the porous morphology is enhanced and most uniform when the brushes are grown from the Y-inimer, indicating that a 1:1 grafting ratio and intimate contact between A and B brushes are essential.

2.
Langmuir ; 39(23): 8267-8278, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37253273

RESUMEN

Polymer brushes with controllable grafting density are grown on an inimer coating bearing Reversible Addition-Fragmentation Chain Transfer polymerization (RAFT) chain transfer agents (CTAs). The inimer coating is cross-linked on the substrate to provide an initiator layer that is stable during exposure to organic solvents at high temperatures. Surface-initiated RAFT is conducted to grow poly(2-vinylpyridine) (P2VP) brushes on the coating at grafting densities approaching the theoretical limits. This methodology allows facile end-group functionalization using an efficient thiol-ene click chemistry. Chain ends were functionalized with low surface energy groups to modulate the location of the untethered chain ends by thermal annealing. At lower grafting densities, the low surface energy groups segregate to the surface upon annealing. This effect is less pronounced at higher grafting densities. Detailed characterization of the brushes at varying grafting densities using X-ray photoelectron spectroscopy (XPS) is presented. In tandem with experiments, Monte Carlo simulations examine the effect of the chain-end group size and selectivity on the conformation of the polymer brush, providing numerical evidence of laterally non-uniform distributions of functional groups at different locations in the brush. Simulations further predict the existence of morphologies with an interlayer formed by spherical micelles rich in functional end groups, demonstrating the possibility of end-group functionalization for synthetic modulation of both brush conformation and chain-end location.

3.
Langmuir ; 39(40): 14433-14440, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37756498

RESUMEN

Tangential flow interfacial self-assembly (TaFISA) is a promising scalable technique enabling uniformly aligned carbon nanotubes for high-performance semiconductor electronics. In this process, flow is utilized to induce global alignment in two-dimensional nematic carbon nanotube assemblies trapped at a liquid/liquid interface, and these assemblies are subsequently deposited on target substrates. Here, we present an observational study of experimental parameters that affect the interfacial assembly and subsequent aligned nanotube deposition. We specifically study the water contact angle (WCA) of the substrate, nanotube ink composition, and water subphase and examine their effects on liquid crystal defects, overall and local alignment, and nanotube bunching or crowding. By varying the substrate chemical functionalization, we determine that highly aligned, densely packed, individualized nanotubes deposit only at relatively small WCA between 35 and 65°. At WCA (< 10°), high nanotube bunching or crowding occurs, and the film is nonuniform, while aligned deposition ceases to occur at higher WCA (>65°). We find that the best alignment, with minimal liquid crystal defects, occurs when the polymer-wrapped nanotubes are dispersed in chloroform at a low (0.6:1) wrapper polymer to nanotube ratio. We also demonstrate that modifying the water subphase through the addition of glycerol not only improves overall alignment and reduces liquid crystal defects but also increases local nanotube bunching. These observations provide important guidance for the implementation of TaFISA and its use toward creating technologies based on aligned semiconducting carbon nanotubes.

4.
Soft Matter ; 18(25): 4653-4659, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35704922

RESUMEN

Controlling the deposition of polymer-wrapped single-walled carbon nanotubes (s-CNTs) onto functionalized substrates can enable the fabrication of s-CNT arrays for semiconductor devices. In this work, we utilize classical atomistic molecular dynamics (MD) simulations to show that a simple descriptor of solvent structure near silica substrates functionalized by a wide variety of self-assembled monolayers (SAMs) can predict trends in the deposition of s-CNTs from toluene. Free energy calculations and experiments indicate that those SAMs that lead to maximum disruption of solvent structure promote deposition to the greatest extent. These findings are consistent with deposition being driven by solvent-mediated interactions that arise from SAM-solvent interactions, rather than direct s-CNT-SAM interactions, and will permit the rapid computational exploration of potential substrate designs for controlling s-CNT deposition and alignment.

5.
Langmuir ; 35(38): 12492-12500, 2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31461294

RESUMEN

Semiconducting single-walled carbon nanotube (s-CNT) arrays are being explored for next-generation semiconductor electronics. Even with the multitude of alignment and spatially localized s-CNT deposition methods designed to control s-CNT deposition, fundamental understanding of the driving forces for s-CNT deposition is still lacking. The individual roles of the dispersant, solvent, target substrate composition, and the s-CNT itself are not completely understood because it is difficult to decouple deposition parameters. Here, we study poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(6,6'-[2,2'-{bipyridine}])] (PFO-BPy)-wrapped s-CNT deposition from solution onto a chemically modified substrate. We fabricate various self-assembled monolayers (SAMs) to gain a greater understanding of substrate effects on PFO-BPy-wrapped s-CNT deposition. We observe that s-CNT deposition is dependent on both the target substrate and s-CNT dispersion solvent. To complement the experiments, molecular dynamics simulations of PFO-BPy-wrapped s-CNT deposition on two different SAMs are performed to obtain mechanistic insights into the effect of the substrate and solvent on s-CNT deposition. We find that the global free-energy minimum associated with favorable s-CNT adsorption occurs for a configuration in which the minimum of the solvent density around the s-CNT coincides with the minimum of the solvent density above a SAM-grafted surface, indicating that solvent structure near a SAM-grafted surface determines the adsorption free-energy landscape driving s-CNT deposition. Our results will help guide informative substrate design for s-CNT array fabrication in semiconductor devices.

6.
Nano Lett ; 18(3): 1600-1607, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29378412

RESUMEN

PEDOT: PSS, a transparent electrically conductive polymer, finds widespread use in electronic devices. While empirical efforts have increased conductivity, a detailed understanding of the coupled electronic and morphological landscapes in PEDOT:PSS has lagged due to substantial structural heterogeneity on multiple length-scales. We use an optical microresonator-based absorption spectrometer to perform single-particle measurements, providing a bottom-up examination of electronic structure and morphology ranging from single PEDOT:PSS polymers to nascent films. Using single-particle spectroscopy with complementary theoretical calculations and ultrafast spectroscopy, we demonstrate that PEDOT:PSS displays bulk-like optical response even in single polymers. We find highly ordered PEDOT assemblies with long-range ordering mediated by the insulating PSS matrix and reveal a preferential surface orientation of PEDOT nanocrystallites absent in bulk films with implications for interfacial electronic communication. Our single-particle perspective provides a unique window into the microscopic structure and electronic properties of PEDOT:PSS.

7.
J Am Chem Soc ; 140(46): 15827-15841, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30372044

RESUMEN

The interplay between micromorphology and electronic properties is an important theme in organic electronic materials. Here, we show that a spirofluorene-functionalized boron-dipyrromethene (BODIPY) with an alkyl norbornyl tail self-assembles into nanoparticles with qualitatively different properties as compared to the polymerized species. Further, the nanoparticles exhibit a host of unique emissive properties, including photobrightening, a blue satellite peak, and spectral diffusion. Extensive photophysical characterization, including single-particle imaging and spectroscopy, and time-resolved fluorescence, coupled with electronic structure calculations based on an experimentally determined crystal structure, allow a mechanism to be developed. Specifically, BODIPY chromophores are observed to form quasi-two-dimensional layers, where stacking of unit cells adds either J-aggregate character or H-aggregate character depending on the direction of the stacking. Particularly strongly H-coupled domains show the rare process of emission from an upper exciton state, in violation of Kasha's rule, and result in the blue satellite peak. The spatial heterogeneity of structure thus maps onto a gradient of photophysical behavior as seen in single-particle imaging, and the temporal evolution of structure maps onto fluctuating emissive behavior, as seen in single-particle spectroscopy. Taken together, this system provides a striking example of how physical structure and electronic properties are intertwined, and a rare opportunity to use one to chart the other.

8.
Langmuir ; 34(37): 10828-10836, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30145906

RESUMEN

Molecular monolayers that can be reconfigured through the use of external stimuli promise to enable the creation of interfaces with precisely selected dynamically adjustable physical and electronic properties with potential impact ranging from electronics to energy storage. Azobenzene-containing molecular monolayers have multiple stable molecular conformations but face a challenging nanoscale problem associated with understanding the basic mechanisms of reconfiguration. Time-resolved X-ray reflectivity studies show that the reconfiguration of a densely packed rhenium-azobenzene monolayer occurs in a period of many seconds. The degree of reconfiguration from trans to cis forms depends on the integrated UV fluence and has kinetics that are consistent with a mechanism in which the transformation occurs through the nucleation and growth of nanoscale two-dimensional regions of the cis isomer.

9.
Langmuir ; 33(31): 7708-7714, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28715637

RESUMEN

Ionic layer epitaxy (ILE) has recently been developed as an effective strategy to synthesize nanometer thick 2D materials with a nonlayered crystal structure, such as ZnO. The packing density of the amphiphilic monolayer is believed to be a key parameter that controls the nanosheet nucleation and growth. In this work, we systematically investigated the growth behavior of single-crystalline ZnO nanosheets templated at the water-air interface by an anionic oleylsulfate monolayer with different packing densities. The thicknesses of ZnO nanosheets were tuned from one unit cell to four unit cells and exhibited good correlation with the width of Zn2+ ion concentration zone (the Stern layer) underneath the ionized surfactant monolayer. Further analysis of the nanosheet sizes and density revealed that the nanosheet growth was dominated by the steric hindrance from the surfactant monolayer at lower surface pressure, while the nucleation density became the dominating factor at higher surface pressure. The ZnO nanosheets exhibited a decreasing work function as the thickness reduced to a few unit cells. This research validated a critical hypothesis that the nanosheet growth is self-limited by the formation of a double layer of ionic precursors. This work will open up a new way toward controlled synthesis of novel 2D nanosheets from nonlayered materials with a thickness down to one unit cell.

10.
Langmuir ; 33(9): 2157-2168, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28170273

RESUMEN

The structural configuration of molecules assembled at organic-inorganic interfaces within electronic materials strongly influences the functional electronic and vibrational properties relevant to applications ranging from energy storage to photovoltaics. Controlling and characterizing the structural state of an interface and its evolution under external stimuli is crucial both for the fundamental understanding of the factors influenced by molecular structure and for the development of methods for material synthesis. It has been challenging to create complete molecular monolayers that exhibit external reversible control of the structure and electronic configuration. We report a monolayer/inorganic interface consisting of an organic monolayer assembled on an oxide surface, exhibiting structural and electronic reconfiguration under ultraviolet illumination. The molecular monolayer is linked to the surface through a carboxylate link, with the backbone bearing an azobenzene functional group and the head group consisting of a rhenium-bipyridine group. Optical spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, and X-ray reflectivity show that closely packed monolayers are formed from these molecules via the Langmuir-Blodgett technique. Reversible photoisomerization is observed in solution and in monolayers assembled on Si and quartz substrates. The reconfiguration of these monolayers provides additional means to control excitation and charge transfer processes that are important in applications in catalysis, molecular electronics, and solar energy conversion.

11.
Langmuir ; 33(46): 13407-13414, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29058446

RESUMEN

The challenge of assembling semiconducting single-wall carbon nanotubes (s-SWCNTs) into densely packed, aligned arrays has limited the scalability and practicality of high-performance nanotube-based electronics technologies. The aligned deposition of s-SWCNTs via floating evaporative self-assembly (FESA) has promise for overcoming this challenge; however, the mechanisms behind FESA need to be elucidated before the technique can be improved and scaled. Here, we gain a deeper understanding of the FESA process by studying a stationary analogue of FESA and optically tracking the dynamics of the organic ink/water/substrate and ink/air/substrate interfaces during the typical FESA process. We observe that the ink/water interface serves to collect and confine the s-SWCNTs before alignment and that the deposition of aligned bands of s-SWCNTs occurs at the ink/water/substrate contact line during the depinning of both the ink/air/substrate and ink/water/substrate contact lines. We also demonstrate improved control over the interband spacing, bandwidth, and packing density of FESA-aligned s-SWCNT arrays. The substrate lift rate (5-15 mm min-1) is used to tailor the interband spacing from 90 to 280 µm while maintaining a constant aligned s-SWCNT bandwidth of 50 µm. Varying the s-SWCNT ink concentration (0.75-10 µg mL-1) allows the control of the bandwidth from 2.5 to 45 µm. A steep increase in packing density is observed from 11 s-SWCNTs µm-1 at 0.75 µg mL-1 to 20 s-SWCNTs µm-1 at 2 µg mL-1, with a saturated packing density of ∼24 s-SWCNTs µm-1. We also demonstrate the scaling of FESA to align s-SWCNTs on a 2.5 × 2.5 cm2 scale while preserving high-quality alignment on the nanometer scale. These findings help realize the scalable fabrication of well-aligned s-SWCNT arrays to serve as large-area platforms for next-generation semiconductor electronics.

12.
Biomacromolecules ; 17(3): 1040-7, 2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-26835552

RESUMEN

Conjugation of biomolecules for stable presentation is an essential step toward reliable chemically defined platforms for cell culture studies. In this work, we describe the formation of a stable and site-specific amide bond via the coupling of a cysteine terminated peptide at low concentration to an azlactone containing copolymer coating. A copolymer of polyethylene glycol methyl ether methacrylate-ran-vinyl azlactone-ran-glycidyl methacrylate P(PEGMEMA-r-VDM-r-GMA) was used to form a thin coating (20-30 nm) on silicon and polycarbonate substrates. The formation and stability of coating-peptide bonds for peptides containing free thiols and amines were quantified by X-ray photoelectron spectroscopy (XPS) after exposure to cell culture conditions. Peptides containing a thiol as the only nucleophile coupled via a thioester bond; however, the bond was labile under cell culture conditions and almost all the bound peptides were displaced from the surface over a period of 2 days. Coupling with N-terminal primary amine peptides resulted in the formation of an amide bond with low efficiency (<20%). In contrast, peptides containing an N-terminal cysteine, which contain both nucleophiles (free thiol and amine) in close proximity, bound with 67% efficiency under neutral pH, and were stable under the same conditions for 2 weeks. Control studies confirm that the stable amide formation was a result of an intramolecular rearrangement through a N-acyl intermediate that resembles native chemical ligation. Through a combination of XPS and cell culture studies, we show that the cysteine terminated peptides undergo a native chemical ligation process at low peptide concentration in aqueous media, short reaction time, and at room temperature resulting in the stable presentation of peptides beyond 2 weeks for cell culture studies.


Asunto(s)
Materiales Biocompatibles Revestidos/síntesis química , Péptidos/química , Línea Celular , Materiales Biocompatibles Revestidos/farmacología , Cisteína/química , Humanos , Lactonas/química , Células Madre Mesenquimatosas/efectos de los fármacos , Cemento de Policarboxilato/química , Polietilenglicoles/síntesis química , Polietilenglicoles/farmacología , Ácidos Polimetacrílicos/síntesis química , Ácidos Polimetacrílicos/farmacología , Siliconas/química
13.
Phys Rev Lett ; 115(25): 258302, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26722950

RESUMEN

We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δχ, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δχ≈2×10^{-8}. From field-dependent scattering data, we estimate that grains of ≈1.2 µm are present during alignment. These results demonstrate that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.

14.
J Chem Phys ; 142(21): 212449, 2015 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-26049469

RESUMEN

We report that a model dye, Re(CO)3(bypy)CO2H, aggregates into clusters on TiO2 nanoparticles regardless of our preparation conditions. Using two-dimensional infrared (2D IR) spectroscopy, we have identified characteristic frequencies of monomers, dimers, and trimers. A comparison of 2D IR spectra in solution versus those deposited on TiO2 shows that the propensity to dimerize in solution leads to higher dimer formation on TiO2, but that dimers are formed even if there are only monomers in solution. Aggregates cannot be washed off with standard protocols and are present even at submonolayer coverages. We observe cross peaks between aggregates of different sizes, primarily dimers and trimers, indicating that clusters consist of microdomains in close proximity. 2D IR spectroscopy is used to draw these conclusions from measurements of vibrational couplings, but if molecules are close enough to be vibrationally coupled, then they are also likely to be electronically coupled, which could alter charge transfer.

15.
J Am Chem Soc ; 136(3): 956-62, 2014 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-24372101

RESUMEN

Surface-bound polypeptides and proteins are increasingly used to functionalize inorganic interfaces such as electrodes, but their structural characterization is exceedingly difficult with standard technologies. In this paper, we report the first two-dimensional sum-frequency generation (2D SFG) spectra of a peptide monolayer, which are collected by adding a mid-IR pulse shaper to a standard femtosecond SFG spectrometer. On a gold surface, standard FTIR spectroscopy is inconclusive about the peptide structure because of solvation-induced frequency shifts, but the 2D line shapes, anharmonic shifts, and lifetimes obtained from 2D SFG reveal that the peptide is largely α-helical and upright. Random coil residues are also observed, which do not themselves appear in SFG spectra due to their isotropic structural distribution, but which still absorb infrared light and so can be detected by cross-peaks in 2D SFG spectra. We discuss these results in the context of peptide design. Because of the similar way in which the spectra are collected, these 2D SFG spectra can be directly compared to 2D IR spectra, thereby enabling structural interpretations of surface-bound peptides and biomolecules based on the well-studied structure/2D IR spectra relationships established from soluble proteins.


Asunto(s)
Péptidos/química , Secuencia de Aminoácidos , Oro/química , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Espectrofotometría Infrarroja , Propiedades de Superficie
16.
Langmuir ; 30(12): 3460-6, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24580418

RESUMEN

Arrays of aligned semiconducting single-walled carbon nanotubes (s-SWCNTs) with exceptional electronic-type purity were deposited at high deposition velocity of 5 mm min(-1) by a novel "dose-controlled, floating evaporative self-assembly" process with excellent control over the placement of stripes and quantity of s-SWCNTs deposited. This approach uses the diffusion of organic solvent on the water-air interface to deposit aligned s-SWCNT (99.9%) tubes on a partially submerged hydrophobic substrate, which is withdrawn vertically from the surface of water. By decoupling the s-SWCNT stripe formation from the evaporation of the bulk solution and by iteratively applying the s-SWCNTs in controlled "doses", we show through polarized Raman studies that the s-SWCNTs are aligned within ±14°, are packed at a density of ∼50 s-SWCNTs µm(-1), and constitute primarily a well-ordered monodispersed layer. The resulting field-effect transistor devices show high performance with a mobility of 38 cm(2) V(-1) s(-1) and on/off ratio of 2.2 × 10(6) at 9 µm channel length.

17.
Langmuir ; 30(21): 6104-13, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24797789

RESUMEN

We demonstrate the Langmuir-Blodgett assembly of two rhenium-bipyridine complexes containing a flexible or an aromatic bridge, and transfer of the monolayer to SiO2 and single crystal TiO2 substrates. Both of the complexes (ReEC and Re2TC) have a hydrophilic carboxylic acid group, which preferentially anchors into the water subphase, and forms stable monolayers at surface pressures up to 40 mN/m. The optimum conditions for the formation of complete monolayers of both ReEC and Re2TC were identified through characterization of the morphology by atomic force microscopy (AFM), the thickness by ellipsometry, and the surface coverage by X-ray photoelectron spectroscopy (XPS). X-ray reflectivity measurements (XRR) are consistent with the orientation of the molecules normal to the substrate, and their extension to close to their calculated maximum length. Parameters derived from XRR analysis show that there is a higher packing density for Re2TC monolayers than for ReEC monolayers, attributable to the more rigid bridge in the Re2TC molecule.

18.
Langmuir ; 30(9): 2559-65, 2014 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-24520997

RESUMEN

Recently, single-walled carbon nanotubes as well as graphene functionalized with azobenzene chromophores have drawn attention for applications in optoelectronics due to their ability to undergo cis-trans isomerization when exposed to light. The electronic properties of the nanocarbon materials at these unconventional interfaces can be tailored by gaining structural insight into the organic monolayers at the molecular level. In this work, we use polarization-dependent X-ray absorption spectroscopy to probe the orientation of three chromophores on graphene, all identical except for their terminal groups. All three terminal groups (methyl, nitro, and nitrile) are well-oriented, with a tilt angle of about 30° from the substrate for the shared azobenzene group. Density functional theory calculations are in good agreement with experimental results and give two similar, stable configurations for the orientation of these molecules on graphene.

19.
Langmuir ; 29(11): 3805-12, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23425347

RESUMEN

We have developed a highly versatile universal approach to grow polymer brushes from a variety of substrates with high grafting density by using a single-component system. We describe a random copolymer which consists of an inimer, p-(2-bromoisobutyloylmethyl)styrene (BiBMS), copolymerized with glycidyl methacrylate (GMA) synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization. Thermal cross-linking created a mat that was stable during long exposure in organic solvent even with sonication or during Soxhlet extraction. The absolute bromine density was determined via X-ray photoelectron spectroscopy (XPS) to be 1.86 ± 0.12 Br atoms/nm(3). The ratio of experimental density to calculated absolute initiator density suggests that ~25% of the bromine is lost during cross-linking. Surface-initiated ATRP (SI-ATRP) was used to grow PMMA brushes on the substrate with sacrificial initiator in solution. The brushes were characterized by ellipsometry, XPS, and atomic force microscopy (AFM) to determine thickness, composition, and homogeneity. By correlating the molecular weight of polymer grown in solution with the brush layer thickness, a high grafting density of 0.80 ± 0.06 chains/nm(2) was calculated. By synthesizing the copolymer before cross-linking on the substrate, this single-component approach avoids any issues with blend miscibility as might be present for a multicomponent curable mixture, while resulting in high chain density on a range of substrates.

20.
Langmuir ; 29(41): 12858-65, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24053350

RESUMEN

We present a versatile method for fabricating nanopatterned polymer brushes using a cross-linked thin film made from a random copolymer consisting of an inimer (p-(2-bromoisobutyloylmethyl)styrene), styrene, and glycidyl methacrylate (GMA). The amount of inimer was held constant at 20 or 30% while the relative amount of styrene to GMA was varied to induce perpendicular domain orientation in an overlying P(S-b-MMA) block copolymer (BCP) film for lamellar and cylindrical morphologies. A cylinder forming BCP blend with PMMA homopolymer was assembled to create a perpendicular hexagonal array of cylinders, which allowed access to a nanoporous template without the loss of initiator functionality. Surface-initiated ATRP of 2-hydroxyethyl methacrylate was conducted through the pores to generate a dense array of nanopatterned brushes. Alternatively, gold was deposited into the nanopores, and brushes were grown around the dots after removal of the template. This is the first example of combining the chemistry of nonpreferential surfaces with surface-initiated growth of polymer chains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA