Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
EMBO J ; 42(13): e112198, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37278161

RESUMEN

There is growing evidence that ion channels are critically involved in cancer cell invasiveness and metastasis. However, the molecular mechanisms of ion signaling promoting cancer behavior are poorly understood and the complexity of the underlying remodeling during metastasis remains to be explored. Here, using a variety of in vitro and in vivo techniques, we show that metastatic prostate cancer cells acquire a specific Na+ /Ca2+ signature required for persistent invasion. We identify the Na+ leak channel, NALCN, which is overexpressed in metastatic prostate cancer, as a major initiator and regulator of Ca2+ oscillations required for invadopodia formation. Indeed, NALCN-mediated Na+ influx into cancer cells maintains intracellular Ca2+ oscillations via a specific chain of ion transport proteins including plasmalemmal and mitochondrial Na+ /Ca2+ exchangers, SERCA and store-operated channels. This signaling cascade promotes activity of the NACLN-colocalized proto-oncogene Src kinase, actin remodeling and secretion of proteolytic enzymes, thus increasing cancer cell invasive potential and metastatic lesions in vivo. Overall, our findings provide new insights into an ion signaling pathway specific for metastatic cells where NALCN acts as persistent invasion controller.


Asunto(s)
Neoplasias de la Próstata , Sodio , Masculino , Humanos , Sodio/metabolismo , Canales Iónicos/metabolismo , Transporte Iónico , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
2.
FASEB J ; 34(6): 7483-7499, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32277850

RESUMEN

Recent studies have revealed gender differences in cold perception, and pointed to a possible direct action of testosterone (TST) on the cold-activated TRPM8 (Transient Receptor Potential Melastatin Member 8) channel. However, the mechanisms by which TST influences TRPM8-mediated sensory functions remain elusive. Here, we show that TST inhibits TRPM8-mediated mild-cold perception through the noncanonical engagement of the Androgen Receptor (AR). Castration of both male rats and mice increases sensitivity to mild cold, and this effect depends on the presence of intact TRPM8 and AR. TST in nanomolar concentrations suppresses whole-cell TRPM8-mediated currents and single-channel activity in native dorsal root ganglion (DRG) neurons and HEK293 cells co-expressing recombinant TRPM8 and AR, but not TRPM8 alone. AR cloned from rat DRGs shows no difference from standard AR. However, biochemical assays and confocal imaging reveal the presence of AR on the cell surface and its interaction with TRPM8 in response to TST, leading to an inhibition of channel activity.


Asunto(s)
Receptores Androgénicos/metabolismo , Canales Catiónicos TRPM/metabolismo , Testosterona/metabolismo , Andrógenos/metabolismo , Animales , Línea Celular , Frío , Femenino , Ganglios Espinales/metabolismo , Células HEK293 , Humanos , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Ratas , Ratas Wistar
3.
Biochim Biophys Acta Mol Cell Res ; 1865(7): 981-994, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29678654

RESUMEN

Calcium (Ca2+) release from the endoplasmic reticulum plays an important role in many cell-fate defining cellular processes. Traditionally, this Ca2+ release was associated with the ER Ca2+ release channels, inositol 1,4,5­triphosphate receptor (IP3R) and ryanodine receptor (RyR). Lately, however, other calcium conductances have been found to be intracellularly localized and to participate in cell fate regulation. Nonetheless, molecular identity and functional properties of the ER Ca2+ release mechanisms associated with multiple diseases, e.g. prostate cancer, remain unknown. Here we identify a new family of transient receptor potential melastatine 8 (TRPM8) channel isoforms as functional ER Ca2+ release channels expressed in mitochondria-associated ER membranes (MAMs). These TRPM8 isoforms exhibit an unconventional structure with 4 transmembrane domains (TMs) instead of 6 TMs characteristic of the TRP channel archetype. We show that these 4TM-TRPM8 isoforms form functional channels in the ER and participate in regulation of the steady-state Ca2+ concentration ([Ca2+]) in mitochondria and the ER. Thus, our study identifies 4TM-TRPM8 isoforms as ER Ca2+ release mechanism distinct from classical Ca2+ release channels.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Neoplasias de la Próstata/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Anciano , Empalme Alternativo , Línea Celular Tumoral , Células Epiteliales/citología , Células Epiteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Próstata/citología , Próstata/metabolismo , Neoplasias de la Próstata/genética , Dominios Proteicos , Canales Catiónicos TRPM/química
5.
Proc Natl Acad Sci U S A ; 112(26): E3345-54, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26080404

RESUMEN

Deviation of the ambient temperature is one of the most ubiquitous stimuli that continuously affect mammals' skin. Although the role of the warmth receptors in epidermal homeostasis (EH) was elucidated in recent years, the mystery of the keratinocyte mild-cold sensor remains unsolved. Here we report the cloning and characterization of a new functional epidermal isoform of the transient receptor potential M8 (TRPM8) mild-cold receptor, dubbed epidermal TRPM8 (eTRPM8), which is localized in the keratinocyte endoplasmic reticulum membrane and controls mitochondrial Ca(2+) concentration ([Ca(2+)]m). In turn, [Ca(2+)]m modulates ATP and superoxide (O2(·-)) synthesis in a cold-dependent manner. We report that this fine tuning of ATP and O2(·-) levels by cooling controls the balance between keratinocyte proliferation and differentiation. Finally, to ascertain eTRPM8's role in EH in vivo we developed a new functional knockout mouse strain by deleting the pore domain of TRPM8 and demonstrated that eTRPM8 knockout impairs adaptation of the epidermis to low temperatures.


Asunto(s)
Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Frío , Epidermis/metabolismo , Queratinocitos/citología , Isoformas de Proteínas/fisiología , Canales Catiónicos TRPM/fisiología , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Células Cultivadas , Humanos , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Superóxidos/metabolismo
6.
Proc Natl Acad Sci U S A ; 110(50): E4839-48, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24277812

RESUMEN

To achieve and maintain skin architecture and homeostasis, keratinocytes must intricately balance growth, differentiation, and polarized motility known to be governed by calcium. Orai1 is a pore subunit of a store-operated Ca(2+) channel that is a major molecular counterpart for Ca(2+) influx in nonexcitable cells. To elucidate the physiological significance of Orai1 in skin, we studied its functions in epidermis of mice, with targeted disruption of the orai1 gene, human skin sections, and primary keratinocytes. We demonstrate that Orai1 protein is mainly confined to the basal layer of epidermis where it plays a critical role to control keratinocyte proliferation and polarized motility. Orai1 loss of function alters keratinocyte differentiation both in vitro and in vivo. Exploring underlying mechanisms, we show that the activation of Orai1-mediated calcium entry leads to enhancing focal adhesion turnover via a PKCß-Calpain-focal adhesion kinase pathway. Our findings provide insight into the functions of the Orai1 channel in the maintenance of skin homeostasis.


Asunto(s)
Canales de Calcio/metabolismo , Epidermis/fisiología , Homeostasis/fisiología , Queratinocitos/metabolismo , Animales , Western Blotting , Canales de Calcio/genética , Movimiento Celular/fisiología , Proliferación Celular , Células Epidérmicas , Epidermis/metabolismo , Adhesiones Focales/metabolismo , Humanos , Inmunohistoquímica , Queratinocitos/fisiología , Ratones , Ratones Noqueados , Microscopía Confocal , Proteína ORAI1 , Reacción en Cadena en Tiempo Real de la Polimerasa , Cicatrización de Heridas/fisiología
7.
Purinergic Signal ; 11(2): 171-81, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25592684

RESUMEN

Here, we describe a molecular switch associated with opioid receptors-linked signalling cascades that provides a dual opioid control over P2X3 purinoceptor in sensory neurones. Leu-enkephalin inhibited P2X3-mediated currents with IC50 ~10 nM in ~25% of small nociceptive rat dorsal root ganglion (DRG) neurones. In contrast, in neurones pretreated with pertussis toxin leu-enkephalin produced stable and significant increase of P2X3 currents. All effects of opioid were abolished by selective µ-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), nonselective inhibitor naloxone, and by PLC inhibitor U73122. Thus, we discovered a dual link between purinoceptors and µ-opioid receptors: the latter exert both inhibitory (pertussis toxin-sensitive) and stimulatory (pertussis toxin-insensitive) actions on P2X3 receptors through phospholipase C (PLC)-dependent pathways. This dual opioid control of P2X3 receptors may provide a molecular explanation for dichotomy of opioid therapy. Pharmacological control of this newly identified facilitation/inhibition switch may open new perspectives for the adequate medical use of opioids, the most powerful pain-killing agents known today.


Asunto(s)
Receptores Opioides mu/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Células Receptoras Sensoriales/metabolismo , Analgésicos Opioides/farmacología , Animales , Dipéptidos/farmacología , Naloxona/farmacología , Ratas Wistar , Células Receptoras Sensoriales/efectos de los fármacos
8.
J Biol Chem ; 287(5): 2948-62, 2012 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-22128173

RESUMEN

One important mechanism of the regulation of membrane ion channels involves their nonfunctional isoforms generated by alternative splicing. However, knowledge of such isoforms for the members of the transient receptor potential (TRP) superfamily of ion channels remains quite limited. This study focuses on the TRPM8, which functions as a cold receptor in sensory neurons but is also expressed in tissues not exposed to ambient temperatures, as well as in cancer tissues. We report the cloning from prostate cancer cells of new short splice variants of TRPM8, termed short TRPM8α and short TRPM8ß. Our results show that both variants are in a closed configuration with the C-terminal tail of the full-length TRPM8 channel, resulting in stabilization of its closed state and thus reducing both its cold sensitivity and activity. Our findings therefore uncover a new mode of regulation of the TRPM8 channel by its splice variants.


Asunto(s)
Empalme Alternativo/fisiología , Canales Catiónicos TRPM/metabolismo , Línea Celular Tumoral , Células HEK293 , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidad Proteica , Estructura Terciaria de Proteína , Canales Catiónicos TRPM/genética
9.
J Cell Sci ; 124(Pt 13): 2267-76, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21652627

RESUMEN

Valproic acid (VPA) is the most highly prescribed epilepsy treatment worldwide and is also used to prevent bipolar disorder and migraine. Surprisingly, very little is known about its mechanisms of cellular uptake. Here, we employ a range of cellular, molecular and genetic approaches to characterize VPA uptake using a simple biomedical model, Dictyostelium discoideum. We show that VPA is taken up against an electrochemical gradient in a dose-dependent manner. Transport is protein-mediated, dependent on pH and the proton gradient and shows strong substrate structure specificity. Using a genetic screen, we identified a protein homologous to a mammalian solute carrier family 4 (SLC4) bicarbonate transporter that we show is involved in VPA uptake. Pharmacological and genetic ablation of this protein reduces the uptake of VPA and partially protects against VPA-dependent developmental effects, and extracellular bicarbonate competes for VPA uptake in Dictyostelium. We further show that this uptake mechanism is likely to be conserved in both zebrafish (Danio rerio) and Xenopus laevis model systems. These results implicate, for the first time, an uptake mechanism for VPA through SLC4-catalysed activity.


Asunto(s)
Dictyostelium/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ácido Valproico/metabolismo , Animales , Transporte Biológico Activo/fisiología , Células Cultivadas , Dictyostelium/efectos de los fármacos , Concentración de Iones de Hidrógeno , Proteínas de Transporte de Membrana/genética , Especificidad por Sustrato , Ácido Valproico/farmacología , Xenopus laevis , Pez Cebra
10.
Nat Commun ; 13(1): 956, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177596

RESUMEN

Cellular senescence is implicated in a great number of diseases including cancer. Although alterations in mitochondrial metabolism were reported as senescence drivers, the underlying mechanisms remain elusive. We report the mechanism altering mitochondrial function and OXPHOS in stress-induced senescent fibroblasts. We demonstrate that TRPC3 protein, acting as a controller of mitochondrial Ca2+ load via negative regulation of IP3 receptor-mediated Ca2+ release, is down regulated in senescence regardless of the type of senescence inducer. This remodelling promotes cytosolic/mitochondrial Ca2+ oscillations and elevates mitochondrial Ca2+ load, mitochondrial oxygen consumption rate and oxidative phosphorylation. Re-expression of TRPC3 in senescent cells diminishes mitochondrial Ca2+ load and promotes escape from OIS-induced senescence. Cellular senescence evoked by TRPC3 downregulation in stromal cells displays a proinflammatory and tumour-promoting secretome that encourages cancer epithelial cell proliferation and tumour growth in vivo. Altogether, our results unravel the mechanism contributing to pro-tumour behaviour of senescent cells.


Asunto(s)
Carcinogénesis/patología , Neoplasias/patología , Canales Catiónicos TRPC/metabolismo , Calcio/metabolismo , Línea Celular Tumoral , Proliferación Celular , Senescencia Celular , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mitocondrias/metabolismo , Fosforilación Oxidativa , Cultivo Primario de Células
11.
J Cell Biol ; 174(4): 535-46, 2006 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-16908669

RESUMEN

Although human pannexins (PanX) are homologous to gap junction molecules, their physiological function in vertebrates remains poorly understood. Our results demonstrate that overexpression of PanX1 results in the formation of Ca(2+)-permeable gap junction channels between adjacent cells, thus, allowing direct intercellular Ca(2+) diffusion and facilitating intercellular Ca(2+) wave propagation. More intriguingly, our results strongly suggest that PanX1 may also form Ca(2+)-permeable channels in the endoplasmic reticulum (ER). These channels contribute to the ER Ca(2+) leak and thereby affect the ER Ca(2+) load. Because leakage remains the most enigmatic of those processes involved in intracellular calcium homeostasis, and the molecular nature of the leak channels is as yet unknown, the results of this work provide new insight into calcium signaling mechanisms. These results imply that for vertebrates, a new protein family, referred to as pannexins, may not simply duplicate the connexin function but may also provide additional pathways for intra- and intercellular calcium signaling and homeostasis.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Permeabilidad de la Membrana Celular/fisiología , Membrana Celular/metabolismo , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Calcio/metabolismo , Comunicación Celular/fisiología , Línea Celular Tumoral , Conexinas/genética , Difusión , Retículo Endoplásmico/metabolismo , Colorantes Fluorescentes , Homeostasis/fisiología , Humanos , Membranas Intracelulares/metabolismo , Microscopía Confocal , Proteínas del Tejido Nervioso , ARN Mensajero/metabolismo , Factores de Tiempo
12.
Int Rev Cell Mol Biol ; 363: 123-168, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34392928

RESUMEN

In recent decades cancer emerged as one of the leading causes of death in the developed countries, with some types of cancer contributing to the top 10 causes of death on the list of the World Health Organization. Carcinogenesis, a malignant transformation causing formation of tumors in normal tissues, is associated with changes in the cell cycle caused by suppression of signaling pathways leading to cell death and facilitation of those enhancing proliferation. Further progression of cancer, during which benign tumors acquire more aggressive phenotypes, is characterized by metastatic dissemination through the body driven by augmented motility and invasiveness of cancer cells. All these processes are associated with alterations in calcium homeostasis in cancer cells, which promote their proliferation, motility and invasion, and dissuade cell death or cell cycle arrest. Remodeling of store-operated calcium entry (SOCE), one of the major pathways regulating intracellular Ca2+ concentration ([Ca2+]i), manifests a key event in many of these processes. This review systematizes current knowledge on the mechanisms recruiting SOCE-related proteins in carcinogenesis and cancer progression.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Carcinogénesis/metabolismo , Neoplasias/metabolismo , Animales , Humanos , Neoplasias/patología
13.
J Cell Mol Med ; 13(11-12): 4532-9, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19175686

RESUMEN

It is now established that non-contractile cells with thin filopodia, also called vascular interstitial cells (VICs), are constitutively present in the media of many, if not all, blood vessels. The aim of this study was to determine the type of cell lineage to which arterial VICs belong using immunocytochemical, and real-time and reverse transcription PCR (RT-PCR). Using RT-PCR, we compared gene expression profiles of single VICs and smooth muscle cells (SMCs) freshly dispersed from rat middle cerebral artery. Both VICs and SMCs expressed the SMC marker, smooth muscle myosin heavy chain (SM-MHC), but did not express fibroblast, pericyte, neuronal, mast cell, endothelial or stem cell markers. Freshly isolated VICs also did not express c-kit, which is the marker for interstitial cells of Cajal in the gastrointestinal tract. Immunocytochemical labelling of contractile proteins showed that VICs and SMCs expressed SM-MHC similarly to the same degree, but VICs in contrast to SMCs had decreased expression of alpha-SM-actin and very low or no expression of calponin. Real-time RT-PCR was consistent with immunocytochemical experiments and showed that VICs had four times lower gene expression of calponin comparing to SMCs, which may explain VICs' inability to contract. VICs had greater expression than SMCs of structural proteins such as non-muscular beta-actin and desmin. The results obtained suggest that VICs represent a subtype of SMCs and may originate from the same precursor as SMCs, but later develop filopodia and a non-contractile cell phenotype.


Asunto(s)
Arteria Cerebral Media/citología , Miocitos del Músculo Liso/citología , Animales , Proteínas Contráctiles/genética , Proteínas Contráctiles/metabolismo , Regulación de la Expresión Génica , Inmunohistoquímica , Masculino , Arteria Cerebral Media/ultraestructura , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/ultraestructura , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
Sci Rep ; 7(1): 14082, 2017 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-29074990

RESUMEN

Intracellular ion channels are involved in multiple signaling processes, including such crucial ones as regulation of cellular motility and fate. With 95% of the cellular membrane belonging to intracellular organelles, it is hard to overestimate the importance of intracellular ion channels. Multiple studies have been performed on these channels over the years, however, a unified approach allowing not only to characterize their activity but also to study their regulation by partner proteins, analogous to the patch clamp "golden standard", is lacking. Here, we present a universal approach that combines the extraction of intracellular membrane fractions with the preparation of patchable substrates that allows to characterize these channels in endogenous protein environment and to study their regulation by partner proteins. We validate this method by characterizing activity of multiple intracellular ion channels localized to different organelles and by providing detailed electrophysiological characterization of the regulation of IP3R activity by endogenous Bcl-2. Thus, after synthesis and reshaping of the well-established approaches, organelle membrane derived patch clamp provides the means to assess ion channels from arbitrary cellular membranes at the single channel level.


Asunto(s)
Fraccionamiento Celular/métodos , Membranas Intracelulares , Orgánulos , Línea Celular Tumoral , Células HEK293 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Membranas Intracelulares/metabolismo , Orgánulos/metabolismo , Técnicas de Placa-Clamp , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
15.
Sci Rep ; 7(1): 15896, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29162859

RESUMEN

Despite the tremendous progress in medicine, cancer remains one of the most serious global health problems awaiting new effective therapies. Here we present ferroquine (FQ), the next generation antimalarial drug, as a promising candidate for repositioning as cancer therapeutics. We report that FQ potently inhibits autophagy, perturbs lysosomal function and impairs prostate tumor growth in vivo. We demonstrate that FQ negatively regulates Akt kinase and hypoxia-inducible factor-1α (HIF-1α) and is particularly effective in starved and hypoxic conditions frequently observed in advanced solid cancers. FQ enhances the anticancer activity of several chemotherapeutics suggesting its potential application as an adjuvant to existing anticancer therapy. Alike its parent compound chloroquine (CQ), FQ accumulates within and deacidifies lysosomes. Further, FQ induces lysosomal membrane permeabilization, mitochondrial depolarization and caspase-independent cancer cell death. Overall, our work identifies ferroquine as a promising new drug with a potent anticancer activity.


Asunto(s)
Aminoquinolinas/farmacología , Antimaláricos/farmacología , Antineoplásicos/farmacología , Compuestos Ferrosos/farmacología , Aminoquinolinas/química , Animales , Antimaláricos/química , Autofagia/efectos de los fármacos , Caspasas/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cloroquina/química , Cloroquina/farmacología , Femenino , Compuestos Ferrosos/química , Concentración de Iones de Hidrógeno , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Metalocenos , Ratones Desnudos , Neoplasias/patología , Permeabilidad , Estrés Fisiológico , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Cell Calcium ; 40(3): 287-98, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16797696

RESUMEN

Interstitial cells of Cajal (ICCs) freshly isolated from rabbit portal vein and loaded with the Ca(2+)-sensitive indicator fluo-3 revealed rhythmical [Ca(2+)](i) changes occurring at 0.02-0.1 Hz. Each increase in [Ca(2+)](i) originated from a discrete central region of the ICC and propagated as a [Ca(2+)](i) wave towards the cell periphery, but usually became attenuated before reaching the ends of the cell. In about 40% of ICCs each rhythmical change in [Ca(2+)](i) consisted of an initial [Ca(2+)](i) increase (phase 1) followed by a faster rise in [Ca(2+)](i) (phase 2) and then a decrease in [Ca(2+)](i) (phase 3); the frequency correlated with the rate of rise of [Ca(2+)](i) during phase 1, but not with the peak amplitude. Rhythmical [Ca(2+)](i) changes persisted in nicardipine, but were abolished in Ca(2+)-free solution as well as by SK&F96365, cyclopiazonic acid, thapsigargin, 2-APB, xestospongin C or ryanodine. Intracellular Ca(2+) stores visualised with the low-affinity Ca(2+) indicator fluo-3FF were found to be enriched with ryanodine receptors (RyRs) detected with BODIPY TR-X ryanodine. Rhythmical [Ca(2+)](i) changes originated from a perinuclear S/ER element showing the highest RyR density. Immunostaining with anti-TRPC3,6,7 antibodies revealed the expression of these channel proteins in the ICC plasmalemma. This suggests that these rhythmical [Ca(2+)](i) changes, a key element of ICC pacemaking activity, result from S/ER Ca(2+) release which is mediated via RyRs and IP(3) receptors and is modulated by the activity of S/ER-Ca(2+)-ATPase and TRP channels but not by L-type Ca(2+) channels.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Vena Porta/citología , Animales , Células Cultivadas , Retículo Endoplásmico/química , Microscopía Confocal , Contracción Muscular , Músculo Liso/fisiología , Periodicidad , Vena Porta/metabolismo , Vena Porta/fisiología , Conejos , Canal Liberador de Calcio Receptor de Rianodina/análisis , Retículo Sarcoplasmático/química , Retículo Sarcoplasmático/metabolismo , Canales de Potencial de Receptor Transitorio/análisis
17.
Circ Res ; 95(6): 619-26, 2004 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-15331453

RESUMEN

Interstitial cells of Cajal (ICCs) were identified in the intact fixed media of the rabbit portal vein (RPV) using c-kit staining. The following experiments were performed using single cell preparations of the enzyme-dispersed vessel. Surviving contacts between the processes of single ICCs and the bodies of smooth muscle cells (SMCs) were observed in electron micrographs and by confocal microscopy. Spontaneous rhythmical [Ca2+]i oscillations were observed in ICCs after loading with the calcium indicator fluo-3 and were associated with depolarizations of the ICCs recorded by tight-seal patch pipette. To investigate signal transmission from ICCs to SMCs in dispersed cell pairs, or within small surviving fragments of the ICC network, an ICC was stimulated under voltage-clamp, while changes in [Ca2+]i in the stimulated cell as well as in a closely adjacent SMC or ICCs were monitored using fast x-y confocal imaging of fluo-3 fluorescence. After stimulation of single voltage-clamped ICC by a depolarizing step similar in duration to depolarizations associated with spontaneous [Ca2+]i oscillations, a depolarization and transient elevation of [Ca2+]i was observed in a closely adjacent SMCs after a delay of up to 4 seconds. In contrast, signal transmission from ICC to ICC was much faster, the delay being less than 200 ms. These results suggest that the an ICC may, in addition to generating an electrical signal (such as a slow wave) and thereby acting as a pacemaker for vascular SMCs of RPV, also release some unknown diffusible substance, which depolarizes the SMCs.


Asunto(s)
Señalización del Calcio , Músculo Liso Vascular/citología , Vena Porta/citología , Sistema Vasomotor/citología , Animales , Biomarcadores/análisis , Comunicación Celular , Masculino , Potenciales de la Membrana , Microscopía Confocal , Técnicas de Placa-Clamp , Vena Porta/fisiología , Proteínas Proto-Oncogénicas c-kit/análisis , Conejos
18.
Channels (Austin) ; 10(4): 320-31, 2016 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-27014839

RESUMEN

Recently, we reported the cloning and characterization of short isoform of the icilin-activated cold receptor TRPM8 channel in keratinocytes, dubbed eTRPM8. We demonstrated that eTRPM8 via fine tuning of the endoplasmic reticulum (ER) - mitochondria Ca(2+) shuttling regulates mitochondrial ATP and superoxide (O2(•-)) production and, thereby, mediates control of epidermal homeostasis by mild cold. Here, we provide additional information explaining why eTRPM8 suppression and TRPM8 stimulation both inhibit keratinocyte growth. We also demonstrate that stimulation of eTRPM8 with icilin may give rise to sustained oscillatory responses. Furthermore, we show that ATP-induced cytosolic and mitochondrial Ca(2+) responses are attenuated by eTRPM8 suppression. This suggests positive interplay between eTRPM8 and purinergic signaling pathways, what may serve to facilitate the ER-mitochondria Ca(2+) shuttling. Finally, we demonstrate that cold (25°C) induces eTRPM8-dependent superoxide-mediated necrosis of keratinocytes. Altogether, these results are in line with our model of eTRPM8-mediated cold-dependent balance between keratinocyte proliferation and differentiation.


Asunto(s)
Calcio/metabolismo , Queratinocitos/citología , Queratinocitos/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Línea Celular , Proliferación Celular , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Células Epidérmicas , Epidermis/metabolismo , Expresión Génica , Homeostasis , Humanos , Ratones , Mitocondrias/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transducción de Señal , Superóxidos/metabolismo
19.
Pharmacol Rep ; 67(6): 1055-60, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26481522

RESUMEN

BACKGROUND: Purinergic P2X receptors in vascular smooth muscle cells (VSMCs) play an important role in physiological stimulatory responses to the extracellularly released ATP. The aim of this work was to identify molecular P2X receptor subunits in VSMCs isolated from rat anterior, posterior and basilar arteries using a number of contemporary laboratory techniques. METHODS: P2X mediated ionic currents were recorded using amphotericin B perforated patch clamp method. Gene expression analysis was performed using RT-PCR in manually collected VSMCs. The expression of proteins was confirmed by fluorescent immunocytochemistry. RESULTS: Under voltage clamp conditions VSMCs stimulated by application of 10 µmol/l selective P2X receptor agonist αß-meATP, the biphasic currents consisting of rapidly rising rapidly desensitizing and slowly desensitizing components were observed in freshly isolated myocytes from all three arteries. Using RT-PCR, the expression of genes encoding only P2X1 and P2X4 receptor subunits was detected in preparations from all three arteries. The expression of corresponding P2X1 and P2X4 receptor subunit proteins was confirmed in isolated VSMCs. CONCLUSIONS: Our work therefore identified that in major arteries of rat cerebral circulation VSMCs express only P2X1 and P2X4 receptors subunits. We can propose that these P2X receptor subunits participate in functional P2X receptor structures mediating ATP-evoked stimulatory responses in cerebral vascular myocytes in vivo.


Asunto(s)
Arterias Cerebrales/citología , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Receptores Purinérgicos P2X1/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Animales , Células Cultivadas , Expresión Génica/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Músculo Liso Vascular/efectos de los fármacos , Agonistas del Receptor Purinérgico P2X/farmacología , Ratas
20.
Cardiovasc Res ; 105(2): 131-42, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25514930

RESUMEN

AIMS: P2X receptors (P2XRs) mediate sympathetic control and autoregulation of renal circulation triggering preglomerular vasoconstriction, which protects glomeruli from elevated pressures. Although previous studies established a casual link between glomerular susceptibility to hypertensive injury and decreased preglomerular vascular reactivity to P2XR activation, the mechanisms of attenuation of the P2XR signalling in hypertension remained unknown. We aimed to analyse molecular mechanisms of the impairment of P2XR signalling in renal vascular smooth muscle cells (RVSMCs) in genetic hypertension. METHODS AND RESULTS: We compared the expression of pertinent genes and P2XR-linked Ca(2+) entry and Ca(2+) release mechanisms in RVSMCs of spontaneously hypertensive rats (SHRs) and their normotensive controls, Wistar Kyoto (WKY) rats. We found that, in SHR RVSMCs, P2XR-linked Ca(2+) entry and Ca(2+) release from the sarcoplasmic reticulum (SR) are both significantly reduced. The former is due to down-regulation of the P2X1 subunit. The latter is caused by a decrease of the SR Ca(2+) load. The SR Ca(2+) load reduction is caused by attenuated Ca(2+) uptake via down-regulated sarco-/endoplasmic reticulum Ca(2+)-ATPase 2b and elevated Ca(2+) leak from the SR via ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors. Spontaneous activity of these Ca(2+)-release channels is augmented due to up-regulation of RyR type 2 and elevated IP3 production by up-regulated phospholipase C-ß1. CONCLUSIONS: Our study unravels the cellular and molecular mechanisms of attenuation of P2XR-mediated preglomerular vasoconstriction that elevates glomerular susceptibility to harmful hypertensive pressures. This provides an important impetus towards understanding of the pathology of hypertensive renal injury.


Asunto(s)
Canales de Calcio/metabolismo , Hipertensión/genética , Células Musculares/metabolismo , Receptores Purinérgicos P2X/genética , Retículo Sarcoplasmático/metabolismo , Transducción de Señal , Animales , Hipertensión/fisiopatología , Riñón/metabolismo , Masculino , Células Musculares/citología , Miocitos del Músculo Liso/metabolismo , Ratas Endogámicas SHR , Ratas Endogámicas WKY
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA