Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Heliyon ; 9(1): e12953, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36711264

RESUMEN

Bio-inoculation involves the association of plant with some beneficial microorganisms, and among these microbiotas, those bacteria which can promote plant growth and development are known as Plant Growth Promoting Rhizobacteria (PGPR). It can help a plant directly or indirectly, which includes root development, biological nitrogen (N2) fixation, stress tolerance, cell division and elongation, solubilization of Zinc, Phosphate, Potassium, soil health improvement and many more. PGPR have gained attention as it can be used as biofertilizers and helpful in bioremediation techniques, which in turn can reduce the chemical dependency in agriculture. PGPR mediated plant growth and stress management is developed by the virtue of the interaction of plant and microbial signalling pathways. On the other hand, environmental stresses are something to which a plant is always exposed irrespective of other factors. The present review is all about the better understanding of the convergence strategies of these signalling molecules and the ambiguities of signalling activities occurring in the host due to the interaction with PGPR under environmental stressed conditions.

2.
Environ Sci Pollut Res Int ; 25(10): 9283-9292, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29453715

RESUMEN

The minireview is devoted to the analysis of the influence of soil pollution with heavy metals, polyaromatic hydrocarbons (PAHs), and the polychlorinated biphenyls (PCBs) on the distribution of antibiotics resistance genes (ARGs) in soil microbiomes. It is shown that the best understanding of ARGs distribution process requires studying the influence of pollutants on this process in natural microbiocenoses. Heavy metals promote co-selection of genes determining resistance to them together with ARGs in the same mobile elements of a bacterial genome, but the majority of studies focus on agricultural soils enriched with ARGs originating from manure. Studying nonagricultural soils would clear mechanisms of ARGs transfer in natural and anthropogenically transformed environments and highlight the role of antibiotic-producing bacteria. PAHs make a considerable shift in soil microbiomes leading to an increase in the number of Actinobacteria which are the source of antibiotics formation and bear multiple ARGs. The soils polluted with PAHs can be a selective medium for bacteria resistant to antibiotics, and the level of ARGs expression is much higher. PCBs are accumulated in soils and significantly alter the specific structure of soil microbiocenoses. In such soils, representatives of the genera Acinetobacter, Pseudomonas, and Alcanivorax dominate, and the ability to degrade PCBs is connected to horizontal gene transfer (HGT) and high level of genomic plasticity. The attention is also focused on the need to study the properties of the soil having an impact on the bioavailability of pollutants and, as a result, on resistome of soil microorganisms.


Asunto(s)
Antibacterianos/análisis , Bacterias/química , Farmacorresistencia Microbiana/genética , Contaminación Ambiental/análisis , Estiércol/análisis , Metales Pesados/análisis , Microbiota/genética , Bifenilos Policlorados/análisis , Suelo/química , Agricultura , Bacterias/genética , Transferencia de Gen Horizontal , Genoma Bacteriano , Metales Pesados/química , Bifenilos Policlorados/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA