Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pain ; 10: 44, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25123163

RESUMEN

BACKGROUND: Three neuropeptides, gastrin releasing peptide (GRP), natriuritic precursor peptide B (NPPB), and neuromedin B (NMB) have been proposed to play roles in itch sensation. However, the tissues in which these peptides are expressed and their positions in the itch circuit has recently become the subject of debate. Here we used next-gen RNA-Seq to examine the expression of transcripts coding for GRP, NPPB, NMB, and other peptides in DRG, trigeminal ganglion, and the spinal cord as well as expression levels for their cognate receptors in these tissues. RESULTS: RNA-Seq demonstrates that GRP is not transcribed in mouse, rat, or human sensory ganglia. NPPB, which activates natriuretic peptide receptor 1 (NPR1), is well expressed in mouse DRG and less so in rat and human, whereas NPPA, which also acts on the NPR1 receptor, is expressed in all three species. Analysis of transcripts expressed in the spinal cord of mouse, rat, and human reveals no expression of Nppb, but unambiguously detects expression of Grp and the GRP-receptor (Grpr). The transcripts coding for NMB and tachykinin peptides are among the most highly expressed in DRG. Bioinformatics comparisons using the sequence of the peptides used to produce GRP-antibodies with proteome databases revealed that the C-terminal primary sequence of NMB and Substance P can potentially account for results from previous studies which showed GRP-immunostaining in the DRG. CONCLUSIONS: RNA-Seq corroborates a primary itch afferent role for NPPB in mouse and potentially NPPB and NPPA in rats and humans, but does not support GRP as a primary itch neurotransmitter in mouse, rat, or humans. As such, our results are at odds with the initial proposal of Sun and Chen (2007) that GRP is expressed in DRG. By contrast, our data strongly support an itch pathway where the itch-inducing actions of GRP are exerted through its release from spinal cord neurons.


Asunto(s)
Ganglios Espinales/metabolismo , Péptido Liberador de Gastrina/metabolismo , Péptido Natriurético Encefálico/metabolismo , Médula Espinal/citología , Ganglio del Trigémino/metabolismo , Animales , Secuencia de Bases , Biología Computacional , Péptido Liberador de Gastrina/genética , Humanos , Ratones , Péptido Natriurético Encefálico/genética , Ratas , Receptores de Neuropéptido/genética , Receptores de Neuropéptido/metabolismo , Especificidad de la Especie
2.
Exp Neurol ; 283(Pt A): 375-395, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27343803

RESUMEN

Inherited sensory neuropathies are caused by mutations in genes affecting either primary afferent neurons, or the Schwann cells that myelinate them. Using RNA-Seq, we analyzed the transcriptome of human and rat DRG and peripheral nerve, which contain sensory neurons and Schwann cells, respectively. We subdivide inherited sensory neuropathies based on expression of the mutated gene in these tissues, as well as in mouse TRPV1 lineage DRG nociceptive neurons, and across 32 human tissues from the Human Protein Atlas. We propose that this comprehensive approach to neuropathy gene expression leads to better understanding of the involved cell types in patients with these disorders. We also characterize the genetic "fingerprint" of both tissues, and present the highly tissue-specific genes in DRG and sciatic nerve that may aid in the development of gene panels to improve diagnostics for genetic neuropathies, and may represent specific drug targets for diseases of these tissues.


Asunto(s)
Ganglios Espinales/patología , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/patología , Células de Schwann/metabolismo , Nervio Ciático/patología , Transcriptoma , Animales , Mapeo Cromosómico , Ganglios Espinales/metabolismo , Expresión Génica/fisiología , Perfilación de la Expresión Génica , Humanos , Técnicas In Vitro , Oxigenasas de Función Mixta/metabolismo , Complejos Multienzimáticos/metabolismo , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Células de Schwann/patología , Nervio Ciático/metabolismo
3.
J Pain ; 15(12): 1338-1359, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25281809

RESUMEN

UNLABELLED: Disorders of pain neural systems are frequently chronic and, when recalcitrant to treatment, can severely degrade the quality of life. The pain pathway begins with sensory neurons in dorsal root or trigeminal ganglia, and the neuronal subpopulations that express the transient receptor potential cation channel, subfamily V, member 1 (TRPV1) ion channel transduce sensations of painful heat and inflammation and play a fundamental role in clinical pain arising from cancer and arthritis. In the present study, we elucidate the complete transcriptomes of neurons from the TRPV1 lineage and a non-TRPV1 neuroglial population in sensory ganglia through the combined application of next-gen deep RNA-Seq, genetic neuronal labeling with fluorescence-activated cell sorting, or neuron-selective chemoablation. RNA-Seq accurately quantitates gene expression, a difficult parameter to determine with most other methods, especially for very low and very high expressed genes. Differentially expressed genes are present at every level of cellular function from the nucleus to the plasma membrane. We identified many ligand receptor pairs in the TRPV1 population, suggesting that autonomous presynaptic regulation may be a major regulatory mechanism in nociceptive neurons. The data define, in a quantitative, cell population-specific fashion, the molecular signature of a distinct and clinically important group of pain-sensing neurons and provide an overall framework for understanding the transcriptome of TRPV1 nociceptive neurons. PERSPECTIVE: Next-gen RNA-Seq, combined with molecular genetics, provides a comprehensive and quantitative measurement of transcripts in TRPV1 lineage neurons and a contrasting transcriptome from non-TRPV1 neurons and cells. The transcriptome highlights previously unrecognized protein families, identifies multiple molecular circuits for excitatory or inhibitory autocrine and paracrine signaling, and suggests new combinatorial approaches to pain control.


Asunto(s)
Ganglios Espinales/metabolismo , Neuronas Aferentes/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Linaje de la Célula , Expresión Génica , Perfilación de la Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Ratones Transgénicos , Neuroglía/metabolismo , Dolor/metabolismo , Ratas , Especificidad de la Especie , Canales Catiónicos TRPV/genética , Transcriptoma , Nervio Trigémino/metabolismo
4.
J Biol Chem ; 281(43): 32131-9, 2006 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-16895920

RESUMEN

Escherichia coli nucleoside-diphosphate kinase (Ndk) catalyzes nucleoside triphosphate synthesis and maintains intracellular triphosphate pools. Mutants of E. coli lacking Ndk exhibit normal growth rates but show a mutator phenotype that cannot be entirely attributed to the absence of Ndk catalytic activity or to an imbalance in cellular triphosphates. It has been suggested previously that Ndk, similar to its human counterparts, possesses nuclease and DNA repair activities, including the excision of uracil from DNA, an activity normally associated with the Ung and Mug uracil-DNA glycosylases (UDGs) in E. coli. Here we have demonstrated that recombinant Ndk purified from wild-type E. coli contains significant UDG activity that is not intrinsic, but rather, is a consequence of a direct physical and functional interaction between Ung and Ndk, although a residual amount of intrinsic UDG activity exists as well. Co-purification of Ung and Ndk through multicolumn low pressure and nickel-nitrilotriacetic acid affinity chromatography suggests that the interaction occurs in a cellular context, as was also suggested by co-immunoprecipitation of endogenous Ung and Ndk from cellular extracts. Glutathione S-transferase pulldown and far Western analyses demonstrate that the interaction also occurs at the level of purified protein, suggesting that it is specific and direct. Moreover, significant augmentation of Ung catalytic activity by Ndk was observed, suggesting that the interaction between the two enzymes is functionally relevant. These findings represent the first example of Ung interacting with another E. coli protein and also lend support to the recently discovered role of nucleoside-diphosphate kinases as regulatory components of multiprotein complexes.


Asunto(s)
Escherichia coli/enzimología , Nucleósido-Difosfato Quinasa/metabolismo , Uracil-ADN Glicosidasa/metabolismo , Far-Western Blotting , Cromatografía , Escherichia coli/crecimiento & desarrollo , Glutatión Transferasa/metabolismo , Histidina/química , Nucleósido-Difosfato Quinasa/análisis , Nucleósido-Difosfato Quinasa/química , Nucleósido-Difosfato Quinasa/genética , Nucleósido-Difosfato Quinasa/aislamiento & purificación , Oligonucleótidos/química , Unión Proteica , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Uracil-ADN Glicosidasa/análisis , Uracil-ADN Glicosidasa/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA