Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39349967

RESUMEN

Researchers studying autism spectrum disorder (ASD) lack a comprehensive map of the functional network topography in the ASD brain. We used high-quality resting state functional MRI (rs-fMRI) connectivity data and a robust parcellation routine to provide a whole-brain map of functional networks in a group of seventy high-functioning individuals with ASD and a group of seventy typically developing (TD) individuals. The rs-fMRI data were collected using an imaging sequence optimized to achieve high temporal signal-to-noise ratio (tSNR) across the whole-brain. We identified functional networks using a parcellation routine that intrinsically incorporates internal consistency and repeatability of the networks by keeping only network distinctions that agree across halves of the data over multiple random iterations in each group. The groups were tightly matched on tSNR, in-scanner motion, age, and IQ. We compared the maps from each group and found that functional networks in the ASD group are atypical in three seemingly related ways: (1) whole-brain connectivity patterns are less stable across voxels within multiple functional networks, (2) the cerebellum, subcortex, and hippocampus show weaker differentiation of functional subnetworks, and (3) subcortical structures and the hippocampus are atypically integrated with the neocortex. These results were statistically robust and suggest that patterns of network connectivity between the neocortex and the cerebellum, subcortical structures, and hippocampus are atypical in ASD individuals.

2.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33384331

RESUMEN

Previous studies have shown that the conceptual representation of food involves brain regions associated with taste perception. The specificity of this response, however, is unknown. Does viewing pictures of food produce a general, nonspecific response in taste-sensitive regions of the brain? Or is the response specific for how a particular food tastes? Building on recent findings that specific tastes can be decoded from taste-sensitive regions of insular cortex, we asked whether viewing pictures of foods associated with a specific taste (e.g., sweet, salty, and sour) can also be decoded from these same regions, and if so, are the patterns of neural activity elicited by the pictures and their associated tastes similar? Using ultrahigh-resolution functional magnetic resonance imaging at high magnetic field strength (7-Tesla), we were able to decode specific tastes delivered during scanning, as well as the specific taste category associated with food pictures within the dorsal mid-insula, a primary taste responsive region of brain. Thus, merely viewing food pictures triggers an automatic retrieval of specific taste quality information associated with the depicted foods, within gustatory cortex. However, the patterns of activity elicited by pictures and their associated tastes were unrelated, thus suggesting a clear neural distinction between inferred and directly experienced sensory events. These data show how higher-order inferences derived from stimuli in one modality (i.e., vision) can be represented in brain regions typically thought to represent only low-level information about a different modality (i.e., taste).


Asunto(s)
Percepción del Gusto/fisiología , Percepción Visual/fisiología , Adulto , Encéfalo/fisiología , Mapeo Encefálico/métodos , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiología , Femenino , Alimentos , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Gusto/fisiología
3.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33723070

RESUMEN

The necessity of the human hippocampus for remote autobiographical recall remains fiercely debated. The standard model of consolidation predicts a time-limited role for the hippocampus, but the competing multiple trace/trace transformation theories posit indefinite involvement. Lesion evidence remains inconclusive, and the inferences one can draw from functional MRI (fMRI) have been limited by reliance on covert (silent) recall, which obscures dynamic, moment-to-moment content of retrieved memories. Here, we capitalized on advances in fMRI denoising to employ overtly spoken recall. Forty participants retrieved recent and remote memories, describing each for approximately 2 min. Details associated with each memory were identified and modeled in the fMRI time-series data using a variant of the Autobiographical Interview procedure, and activity associated with the recall of recent and remote memories was then compared. Posterior hippocampal regions exhibited temporally graded activity patterns (recent events > remote events), as did several regions of frontal and parietal cortex. Consistent with predictions of the standard model, recall-related hippocampal activity differed from a non-autobiographical control task only for recent, and not remote, events. Task-based connectivity between posterior hippocampal regions and others associated with mental scene construction also exhibited a temporal gradient, with greater connectivity accompanying the recall of recent events. These findings support predictions of the standard model of consolidation and demonstrate the potential benefits of overt recall in neuroimaging experiments.


Asunto(s)
Hipocampo/fisiología , Memoria Episódica , Recuerdo Mental , Adulto , Mapeo Encefálico , Femenino , Voluntarios Sanos , Hipocampo/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Adulto Joven
4.
J Neurosci ; 42(48): 9045-9052, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36257690

RESUMEN

Neuroimaging studies of individuals with autism spectrum disorders (ASDs) consistently find an aberrant pattern of reduced laterality in brain networks that support functions related to social communication and language. However, it is unclear how the underlying functional organization of these brain networks is altered in ASD individuals. We tested four models of reduced laterality in a social communication network in 70 ASD individuals (14 females) and a control group of the same number of tightly matched typically developing (TD) individuals (19 females) using high-quality resting-state fMRI data and a method of measuring patterns of functional laterality across the brain. We found that a functionally defined social communication network exhibited the typical pattern of left laterality in both groups, whereas there was a significant increase in within- relative to across-hemisphere connectivity of homotopic regions in the right hemisphere in ASD individuals. Furthermore, greater within- relative to across-hemisphere connectivity in the left hemisphere was positively correlated with a measure of verbal ability in both groups, whereas greater within- relative to across-hemisphere connectivity in the right hemisphere in ASD, but not TD, individuals was negatively correlated with the same verbal measure. Crucially, these differences in patterns of laterality were not found in two other functional networks and were specifically correlated to a measure of verbal ability but not metrics of other core components of the ASD phenotype. These results suggest that previous reports of reduced laterality in social communication regions in ASD is because of the two hemispheres functioning more independently than seen in TD individuals, with the atypical right-hemisphere network component being maladaptive.SIGNIFICANCE STATEMENT A consistent neuroimaging finding in individuals with ASD is an aberrant pattern of reduced laterality of the brain networks that support functions related to social communication and language. We tested four models of reduced laterality in a social communication network in ASD individuals and a TD control group using high-quality resting-state fMRI data. Our results suggest that reduced laterality of social communication regions in ASD may be because of the two hemispheres functioning more independently than seen in TD individuals, with atypically greater within- than across-hemisphere connectivity in the right hemisphere being maladaptive.


Asunto(s)
Trastorno del Espectro Autista , Femenino , Humanos , Trastorno del Espectro Autista/diagnóstico por imagen , Mapeo Encefálico/métodos , Lateralidad Funcional , Vías Nerviosas/diagnóstico por imagen , Encéfalo , Imagen por Resonancia Magnética/métodos , Lenguaje
5.
J Neurosci ; 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34083253

RESUMEN

Even though the anterior temporal lobe (ATL) comprises several anatomical and functional subdivisions, it is often reduced to a homogeneous theoretical entity, such as a domain-general convergence zone, or "hub", for semantic information. Methodological limitations are largely to blame for the imprecise mapping of function to structure in the ATL. There are two major obstacles to using fMRI to identify the precise functional organization of the ATL: the difficult choice of stimuli and tasks to activate, and dissociate, specific regions within the ATL and poor signal quality due to magnetic field distortions near the sinuses. To circumvent these difficulties, we developed a data-driven parcellation routine using resting-state fMRI data (24 females, 64 males) acquired using a sequence that was optimized to enhance signal in the ATL. Focusing on patterns of functional connectivity between each ATL voxel and the rest of the brain, we found that the ATL comprises at least 34 distinct functional parcels that are arranged into bands along the lateral and ventral cortical surfaces, extending from the posterior temporal lobes into the temporal poles. In addition, the anterior region of the fusiform gyrus, most often cited as the location of the semantic hub, was found to be part of a domain-specific network associated with face and social processing, rather than a domain-general semantic hub. These findings offer a fine-grained functional map of the ATL and offer an initial step towards using more precise language to describe the locations of functional responses in this heterogeneous region of human cortex.SIGNIFICANCE STATEMENTThe functional role of the anterior aspects of the temporal lobes (ATL) is a contentious issue. While it is likely that different regions within the ATL subserve unique cognitive functions, most studies revert to vaguely referring to particular functional regions as "the ATL" and, thus, the mapping of function to anatomy remains unclear. We used resting-state fMRI connectivity patterns between the ATL and the rest of the brain to reveal that the ATL comprises at least 34 distinct functional parcels that are organized into a three-level functional hierarchy. These results provide a detailed functional map of the anterior temporal lobes that can guide future research on how distinct regions within the ATL support diverse cognitive functions.

6.
J Neurosci ; 41(1): 153-166, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33203742

RESUMEN

Humans can vividly recall and re-experience events from their past, and these are commonly referred to as episodic or autobiographical memories. fMRI experiments reliably associate autobiographical event recall with activity in a network of "default" or "core" brain regions. However, as prior studies have relied on covert (silent) recall procedures, current understanding may be hampered by methodological limitations that obscure dynamic effects supporting moment-to-moment content retrieval. Here, fMRI participants (N = 40) overtly (verbally) recalled memories for ∼2 min periods. The content of spoken descriptions was categorized using a variant of the Autobiographical Interview (AI) procedure (Levine et al., 2002) and temporally re-aligned with BOLD data so activity accompanying the recall of different details could be measured. Replicating prior work, sustained effects associated with autobiographical recall periods (which are insensitive to the moment-to-moment content of retrieval) fell primarily within canonical default network regions. Spoken descriptions were rich in episodic details, frequently focusing on physical entities, their ongoing activities, and their appearances. Critically, neural activity associated with recalling specific details (e.g., those related to people or places) was transient, broadly distributed, and grounded in category-selective cortex (e.g., regions related to social cognition or scene processing). Thus, although a single network may generally support the process of vivid event reconstruction, the structures required to provide detail-related information shift in a predictable manner that respects domain-level representations across the cortex.SIGNIFICANCE STATEMENT Humans can vividly recall memories of autobiographical episodes, a process thought to involve the reconstruction of numerous distinct event details. Yet how the brain represents a complex episode as it unfolds over time remains unclear and appears inconsistent across experimental traditions. One hurdle is the use of covert (silent) in-scanner recall to study autobiographical memory, which prevents experimenter knowledge of what information is being retrieved, and when, throughout the remembering process. In this experiment, participants overtly described autobiographical memories while undergoing fMRI. Activity associated with the recall and description of specific details was transient, broadly distributed, and grounded in category-selective cortex. Thus, it appears that as events unfold mentally, structures are dynamically reactivated to support vivid recollection.


Asunto(s)
Memoria Episódica , Narración , Adulto , Mapeo Encefálico/métodos , Corteza Cerebral/fisiología , Femenino , Humanos , Modelos Lineales , Imagen por Resonancia Magnética , Masculino , Recuerdo Mental/fisiología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Oxígeno/sangre , Estimulación Luminosa , Desempeño Psicomotor/fisiología , Percepción Social , Percepción Visual , Adulto Joven
7.
Cereb Cortex ; 31(9): 4180-4190, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34009243

RESUMEN

Klinefelter syndrome (47, XXY; henceforth: XXY syndrome) is a high-impact but poorly understood genetic risk factor for neuropsychiatric impairment. Here, we provide the first study to map alterations of functional brain connectivity in XXY syndrome and relate these changes to brain anatomy and psychopathology. We used resting-state functional magnetic resonance imaging data from 75 individuals with XXY and 84 healthy XY males to 1) implement a brain-wide screen for altered global resting-state functional connectivity (rsFC) in XXY versus XY males and 2) decompose these alterations through seed-based analysis. We then compared these rsFC findings with measures of regional brain anatomy, psychopathology, and cognition. XXY syndrome was characterized by increased global rsFC in the left dorsolateral prefrontal cortex (DLPFC)-reflecting DLPFC overconnectivity with diverse rsFC networks. Functional overconnectivity was partly coupled to co-occurring regional volumetric changes in XXY syndrome, and variation in DLPFC-precuneus rsFC was correlated with the severity of psychopathology. By providing the first view of altered rsFC in XXY syndrome and contextualizing observed changes relative to neuroanatomy and behavior, our study helps to advance biological understanding of XXY syndrome-both as a disorder in its own right and more broadly as a model of genetic risk for psychopathology.


Asunto(s)
Cromosomas Humanos X/genética , Síndrome de Klinefelter/genética , Síndrome de Klinefelter/psicología , Vías Nerviosas/fisiología , Adolescente , Niño , Cromosomas Humanos Y/genética , Femenino , Humanos , Pruebas de Inteligencia , Síndrome de Klinefelter/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Trastornos Mentales/genética , Trastornos Mentales/psicología , Vías Nerviosas/diagnóstico por imagen , Neuroimagen , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/fisiopatología , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiopatología , Adulto Joven
8.
J Neurosci ; 40(5): 1042-1052, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31836661

RESUMEN

In the mammalian brain, the insula is the primary cortical substrate involved in the perception of taste. Recent imaging studies in rodents have identified a "gustotopic" organization in the insula, whereby distinct insula regions are selectively responsive to one of the five basic tastes. However, numerous studies in monkeys have reported that gustatory cortical neurons are broadly-tuned to multiple tastes, and tastes are not represented in discrete spatial locations. Neuroimaging studies in humans have thus far been unable to discern between these two models, though this may be because of the relatively low spatial resolution used in taste studies to date. In the present study, we examined the spatial representation of taste within the human brain using ultra-high resolution functional magnetic resonance imaging (MRI) at high magnetic field strength (7-tesla). During scanning, male and female participants tasted sweet, salty, sour, and tasteless liquids, delivered via a custom-built MRI-compatible tastant-delivery system. Our univariate analyses revealed that all tastes (vs tasteless) activated primary taste cortex within the bilateral dorsal mid-insula, but no brain region exhibited a consistent preference for any individual taste. However, our multivariate searchlight analyses were able to reliably decode the identity of distinct tastes within those mid-insula regions, as well as brain regions involved in affect and reward, such as the striatum, orbitofrontal cortex, and amygdala. These results suggest that taste quality is not represented topographically, but by a distributed population code, both within primary taste cortex as well as regions involved in processing the hedonic and aversive properties of taste.SIGNIFICANCE STATEMENT The insula is the primary cortical substrate involved in taste perception, yet some question remains as to whether this region represents distinct tastes topographically or via a population code. Using high field (7-tesla), high-resolution functional magnetic resonance imaging in humans, we examined the representation of different tastes delivered during scanning. All tastes activated primary taste cortex within the bilateral mid-insula, but no brain region exhibited any consistent taste preference. However, multivariate analyses reliably decoded taste quality within the bilateral mid-insula as well as the striatum, orbitofrontal cortex, and bilateral amygdala. This suggests that taste quality is represented by a spatial population code within regions involved in sensory and appetitive properties of taste.


Asunto(s)
Encéfalo/fisiología , Percepción del Gusto/fisiología , Gusto/fisiología , Adulto , Amígdala del Cerebelo/fisiología , Mapeo Encefálico , Corteza Cerebral/fisiología , Cuerpo Estriado/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Corteza Prefrontal/fisiología , Adulto Joven
9.
Neuroimage ; 226: 117559, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33189929

RESUMEN

Hemispatial neglect is thought to result from disruption of interhemispheric equilibrium. Right hemisphere lesions deactivate the right frontoparietal network and hyperactivate the left via release from interhemispheric inhibition. Support for this putative mechanism comes from neuropsychological evidence as well as transcranial magnetic stimulation (TMS) studies in healthy subjects, in whom right posterior parietal cortex (PPC) inhibition causes neglect-like, rightward, visuospatial bias. Concurrent TMS and fMRI after right PPC TMS show task-dependent changes but may fail to identify effects of stimulation in areas not directly activated by the specific task, complicating interpretations. We used resting-state functional connectivity (RSFC) after inhibitory TMS over the right PPC to examine changes in the networks underlying visuospatial attention and used diffusion-weighted imaging to measure the structural properties of relevant white matter pathways. In a crossover experiment in healthy individuals, we delivered continuous theta burst TMS to the right PPC and vertex as control condition. We hypothesized that PPC inhibitory stimulation would result in a rightward visuospatial bias, decrease frontoparietal RSFC, and increase the PPC RSFC with the attentional network in the left hemisphere. We also expected that individual differences in fractional anisotropy (FA) of the frontoparietal network and the callosal pathway between the PPCs would account for variability of the TMS-induced RSFC changes. As hypothesized, TMS over the right PPC caused a rightward shift in line bisection judgment and increased RSFC between the right PPC and the left superior temporal gyrus. This effect was inversely related to FA in the posterior corpus callosum. Local inhibition of the right PPC reshapes connectivity in the attentional network and depends significantly on interhemispheric connections.


Asunto(s)
Atención/fisiología , Cuerpo Calloso/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Trastornos de la Percepción/diagnóstico por imagen , Percepción Espacial/fisiología , Adulto , Anisotropía , Mapeo Encefálico , Cuerpo Calloso/fisiopatología , Femenino , Lateralidad Funcional/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/fisiopatología , Trastornos de la Percepción/fisiopatología , Estimulación Luminosa , Estimulación Magnética Transcraneal , Adulto Joven
10.
J Neuropsychiatry Clin Neurosci ; 33(4): 337-341, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34392692

RESUMEN

OBJECTIVE: Persistent fatigue is common among military servicemembers returning from deployment, especially those with a history of mild traumatic brain injury (mTBI). The purpose of this study was to characterize fatigue following deployment using the Multidimensional Fatigue Inventory (MFI), a multidimensional self-report instrument. The study was developed to test the hypothesis that if fatigue involves disrupted effort/reward processing, this should manifest as altered basal ganglia functional connectivity as observed in other amotivational states. METHODS: Twenty-eight current and former servicemembers were recruited and completed the MFI. All 28 participants had a history of at least one mTBI during deployment. Twenty-six participants underwent resting-state functional MRI. To test the hypothesis that fatigue was associated with basal ganglia functional connectivity, the investigators measured correlations between MFI subscale scores and the functional connectivity of the left and right caudate, the putamen, and the globus pallidus with the rest of the brain, adjusting for the presence of depression. RESULTS: The investigators found a significant correlation between functional connectivity of the left putamen and bilateral superior frontal gyri and mental fatigue scores. No correlations with the other MFI subscales survived multiple comparisons correction. CONCLUSIONS: This exploratory study suggests that mental fatigue in military servicemembers with a history of deployment with at least one mTBI may be related to increased striatal-prefrontal functional connectivity, independent of depression. A finding of effort/reward mismatch may guide future treatment approaches.


Asunto(s)
Ganglios Basales/patología , Conmoción Encefálica/complicaciones , Encéfalo , Fatiga/etiología , Despliegue Militar/psicología , Adulto , Encéfalo/patología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Corteza Prefrontal/patología , Putamen/patología , Autoinforme , Encuestas y Cuestionarios/estadística & datos numéricos
11.
Cereb Cortex ; 30(9): 4747-4758, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32313949

RESUMEN

Prism adaptation (PA) alters spatial cognition according to the direction of visual displacement by temporarily modifying sensorimotor mapping. Right-shifting prisms (right PA) improve neglect of left visual field in patients, possibly by decreasing activity in the left hemisphere and increasing it in the right. Left PA shifts attention rightward in healthy individuals by an opposite mechanism. However, functional imaging studies of PA are inconsistent, perhaps because of differing activation tasks. We measured resting-state functional connectivity (RSFC) in healthy individuals before and after PA. When contrasted, right versus left PA decreased RSFC in the spatial navigation network defined by the right posterior parietal cortex (PPC), hippocampus, and cerebellum. Within-PA-direction comparisons showed that right PA increased RSFC in subregions of the PPCs and between the PPCs and the right middle frontal gyrus and left PA decreased RSFC between these regions. Both right and left PA decreased RSFC between the PPCs and bilateral temporal areas. In summary, right PA increases connectivity in the right frontoparietal network and left PA produces essentially opposite effects. Furthermore, right, compared with left, PA modulates RSFC in the right hemisphere navigation network.


Asunto(s)
Adaptación Fisiológica/fisiología , Vías Nerviosas/fisiología , Lóbulo Parietal/fisiología , Percepción Espacial/fisiología , Adulto , Atención/fisiología , Encéfalo/fisiología , Femenino , Humanos , Masculino
12.
Proc Natl Acad Sci U S A ; 115(9): E2105-E2114, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29440410

RESUMEN

"Functional connectivity" techniques are commonplace tools for studying brain organization. A critical element of these analyses is to distinguish variance due to neurobiological signals from variance due to nonneurobiological signals. Multiecho fMRI techniques are a promising means for making such distinctions based on signal decay properties. Here, we report that multiecho fMRI techniques enable excellent removal of certain kinds of artifactual variance, namely, spatially focal artifacts due to motion. By removing these artifacts, multiecho techniques reveal frequent, large-amplitude blood oxygen level-dependent (BOLD) signal changes present across all gray matter that are also linked to motion. These whole-brain BOLD signals could reflect widespread neural processes or other processes, such as alterations in blood partial pressure of carbon dioxide (pCO2) due to ventilation changes. By acquiring multiecho data while monitoring breathing, we demonstrate that whole-brain BOLD signals in the resting state are often caused by changes in breathing that co-occur with head motion. These widespread respiratory fMRI signals cannot be isolated from neurobiological signals by multiecho techniques because they occur via the same BOLD mechanism. Respiratory signals must therefore be removed by some other technique to isolate neurobiological covariance in fMRI time series. Several methods for removing global artifacts are demonstrated and compared, and were found to yield fMRI time series essentially free of motion-related influences. These results identify two kinds of motion-associated fMRI variance, with different physical mechanisms and spatial profiles, each of which strongly and differentially influences functional connectivity patterns. Distance-dependent patterns in covariance are nearly entirely attributable to non-BOLD artifacts.


Asunto(s)
Mapeo Encefálico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Movimiento (Física) , Respiración , Artefactos , Encéfalo/fisiología , Estudios de Cohortes , Humanos , Técnica de Sustracción
13.
Neuroimage ; 205: 116289, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31629827

RESUMEN

One of the most controversial practices in resting-state fMRI functional connectivity studies is whether or not to regress out the global average brain signal (GS) during artifact removal. Some groups have argued that it is absolutely essential to regress out the GS in order to fully remove head motion, respiration, and other global imaging artifacts. Others have argued that removing the GS distorts the resulting correlation matrices and inappropriately alters the results of group comparisons and relationships to behavior. At the core of this argument is the assessment of dimensionality in terms of the number of brain networks with uncorrelated time series. If the dimensionality is high, then the distortions due to GS removal could be effectively negligible. In the current paper, we examine the dimensionality of resting-state fMRI data using principal component analyses (PCA) and network clustering analyses. In two independent datasets (Set 1: N = 62, Set 2: N = 32), scree plots of the eigenvalues level off at or prior to 10 principal components, with prominent elbows at 3 and 7 components. While network clustering analyses have previously demonstrated that numerous networks can be distinguished with high thresholding of the voxel-wise correlation matrices, lower thresholding reveals a lower-dimensional hierarchical structure, with the first prominent branch at 2 networks (corresponding to the previously described "task-positive"/"task-negative" distinction) and further stable subdivisions at 4, 7 and 17. Since inter-correlated time series within these larger branches do not cancel to zero when averaged, the hierarchical nature of the correlation structure results in low effective dimensionality. Consistent with this, partial correlation analyses revealed that network-specific variance remains present in the GS at each level of the hierarchy, accounting for at least 14-18% of the overall GS variance in each dataset. These results demonstrate that GS regression is expected to remove substantial portions of network-specific brain signals along with artifacts, not simply whole-brain signals corresponding to arousal levels. We highlight alternative means of controlling for residual global artifacts when not removing the GS.


Asunto(s)
Encéfalo/fisiología , Conectoma/normas , Procesamiento de Imagen Asistido por Computador/normas , Imagen por Resonancia Magnética/normas , Red Nerviosa/fisiología , Adulto , Artefactos , Encéfalo/diagnóstico por imagen , Simulación por Computador , Conectoma/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Red Nerviosa/diagnóstico por imagen , Análisis de Componente Principal , Adulto Joven
14.
Brain ; 142(3): 808-822, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30698656

RESUMEN

Conversation is an important and ubiquitous social behaviour. Individuals with autism spectrum disorder (autism) without intellectual disability often have normal structural language abilities but deficits in social aspects of communication like pragmatics, prosody, and eye contact. Previous studies of resting state activity suggest that intrinsic connections among neural circuits involved with social processing are disrupted in autism, but to date no neuroimaging study has examined neural activity during the most commonplace yet challenging social task: spontaneous conversation. Here we used functional MRI to scan autistic males (n = 19) without intellectual disability and age- and IQ-matched typically developing control subjects (n = 20) while they engaged in a total of 193 face-to-face interactions. Participants completed two kinds of tasks: conversation, which had high social demand, and repetition, which had low social demand. Autistic individuals showed abnormally increased task-driven interregional temporal correlation relative to controls, especially among social processing regions and during high social demand. Furthermore, these increased correlations were associated with parent ratings of participants' social impairments. These results were then compared with previously-acquired resting state data (56 autism, 62 control subjects). While some interregional correlation levels varied by task or rest context, others were strikingly similar across both task and rest, namely increased correlation among the thalamus, dorsal and ventral striatum, somatomotor, temporal and prefrontal cortex in the autistic individuals, relative to the control groups. These results suggest a basic distinction. Autistic cortico-cortical interactions vary by context, tending to increase relative to controls during task and decrease during test. In contrast, striato- and thalamocortical relationships with socially engaged brain regions are increased in both task and rest, and may be core to the condition of autism.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Relaciones Interpersonales , Conducta Verbal/fisiología , Adolescente , Adulto , Trastorno Autístico/fisiopatología , Encéfalo/fisiopatología , Mapeo Encefálico/métodos , Comunicación , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Vías Nerviosas/fisiopatología , Corteza Prefrontal/fisiopatología , Descanso , Conducta Social , Habilidades Sociales , Adulto Joven
15.
Cereb Cortex ; 27(8): 4124-4138, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27522076

RESUMEN

Human face recognition is often attributed to configural processing; namely, processing the spatial relationships among the features of a face. If configural processing depends on fine-grained spatial information, do visuospatial mechanisms within the dorsal visual pathway contribute to this process? We explored this question in human adults using functional magnetic resonance imaging and transcranial magnetic stimulation (TMS) in a same-different face detection task. Within localized, spatial-processing regions of the posterior parietal cortex, configural face differences led to significantly stronger activation compared to featural face differences, and the magnitude of this activation correlated with behavioral performance. In addition, detection of configural relative to featural face differences led to significantly stronger functional connectivity between the right FFA and the spatial processing regions of the dorsal stream, whereas detection of featural relative to configural face differences led to stronger functional connectivity between the right FFA and left FFA. Critically, TMS centered on these parietal regions impaired performance on configural but not featural face difference detections. We conclude that spatial mechanisms within the dorsal visual pathway contribute to the configural processing of facial features and, more broadly, that the dorsal stream may contribute to the veridical perception of faces.


Asunto(s)
Encéfalo/fisiología , Reconocimiento Facial/fisiología , Vías Visuales/fisiología , Adulto , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Pruebas Neuropsicológicas , Estimulación Luminosa , Tiempo de Reacción , Estimulación Magnética Transcraneal , Vías Visuales/diagnóstico por imagen , Adulto Joven
16.
J Neurophysiol ; 118(5): 2853-2864, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28835521

RESUMEN

Recent findings in monkeys suggest that intrinsic periodic spiking activity in selective cortical areas occurs at timescales that follow a sensory or lower order-to-higher order processing hierarchy (Murray JD, Bernacchia A, Freedman DJ, Romo R, Wallis JD, Cai X, Padoa-Schioppa C, Pasternak T, Seo H, Lee D, Wang XJ. Nat Neurosci 17: 1661-1663, 2014). It has not yet been fully explored if a similar timescale hierarchy is present in humans. Additionally, these measures in the monkey studies have not addressed findings that rhythmic activity within a brain area can occur at multiple frequencies. In this study we investigate in humans if regions may be biased toward particular frequencies of intrinsic activity and if a full cortical mapping still reveals an organization that follows this hierarchy. We examined the spectral power in multiple frequency bands (0.5-150 Hz) from task-independent data using magnetoencephalography (MEG). We compared standardized power across bands to find regional frequency biases. Our results demonstrate a mix of lower and higher frequency biases across sensory and higher order regions. Thus they suggest a more complex cortical organization that does not simply follow this hierarchy. Additionally, some regions do not display a bias for a single band, and a data-driven clustering analysis reveals a regional organization with high standardized power in multiple bands. Specifically, theta and beta are both high in dorsal frontal cortex, whereas delta and gamma are high in ventral frontal cortex and temporal cortex. Occipital and parietal regions are biased more narrowly toward alpha power, and ventral temporal lobe displays specific biases toward gamma. Thus intrinsic rhythmic neural activity displays a regional organization but one that is not necessarily hierarchical.NEW & NOTEWORTHY The organization of rhythmic neural activity is not well understood. Whereas it has been postulated that rhythms are organized in a hierarchical manner across brain regions, our novel analysis allows comparison of full cortical maps across different frequency bands, which demonstrate that the rhythmic organization is more complex. Additionally, data-driven methods show that rhythms of multiple frequencies or timescales occur within a particular region and that this nonhierarchical organization is widespread.


Asunto(s)
Ondas Encefálicas/fisiología , Corteza Cerebral/fisiología , Adulto , Mapeo Encefálico , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Magnetoencefalografía , Masculino , Pruebas Neuropsicológicas , Descanso , Procesamiento de Señales Asistido por Computador
17.
Hum Brain Mapp ; 38(4): 2150-2164, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28070928

RESUMEN

The homeostatic regulation of feeding behavior requires an organism to be able to integrate information from its internal environment, including peripheral visceral signals about the body's current energy needs, with information from its external environment, such as the palatability of energy-rich food stimuli. The insula, which serves as the brain's primary sensory cortex for representing both visceral signals from the body and taste signals from the mouth and tongue, is a likely candidate region in which this integration might occur. However, to date it has been unclear whether information from these two homeostatically critical faculties is merely co-represented in the human insula, or actually integrated there. Recent functional neuroimaging evidence of a common substrate for visceral interoception and taste perception within the human dorsal mid-insula suggests a model whereby a single population of neurons may integrate viscerosensory and gustatory signals. To test this model, we used fMRI-Adaptation to identify whether insula regions that exhibit repetition suppression following repeated interoception trials would then also exhibit adapted responses to subsequent gustatory stimuli. Multiple mid and anterior regions of the insula exhibited adaptation to interoceptive trials specifically, but only the dorsal mid-insula regions exhibited an adapted gustatory response following interoception. The discovery of this gustatory-interoceptive convergence within the neurons of the human insula supports the existence of a heretofore-undocumented neural pathway by which visceral signals from the periphery modulate the activity of brain regions involved in feeding behavior. Hum Brain Mapp 38:2150-2164, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Vías Aferentes/fisiología , Mapeo Encefálico , Corteza Cerebral/fisiología , Percepción del Gusto/fisiología , Gusto/fisiología , Adaptación Fisiológica , Adolescente , Adulto , Vías Aferentes/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Interocepción/fisiología , Imagen por Resonancia Magnética , Masculino , Estimulación Luminosa , Sensación/fisiología , Estómago/inervación , Adulto Joven
18.
PLoS Comput Biol ; 12(5): e1004903, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27138214

RESUMEN

It has been shown that the same canonical cortical circuit model with mutual inhibition and a fatigue process can explain perceptual rivalry and other neurophysiological responses to a range of static stimuli. However, it has been proposed that this model cannot explain responses to dynamic inputs such as found in intermittent rivalry and rivalry memory, where maintenance of a percept when the stimulus is absent is required. This challenges the universality of the basic canonical cortical circuit. Here, we show that by including an overlooked realistic small nonspecific background neural activity, the same basic model can reproduce intermittent rivalry and rivalry memory without compromising static rivalry and other cortical phenomena. The background activity induces a mutual-inhibition mechanism for short-term memory, which is robust to noise and where fine-tuning of recurrent excitation or inclusion of sub-threshold currents or synaptic facilitation is unnecessary. We prove existence conditions for the mechanism and show that it can explain experimental results from the quartet apparent motion illusion, which is a prototypical intermittent rivalry stimulus.


Asunto(s)
Memoria a Corto Plazo/fisiología , Modelos Neurológicos , Corteza Visual/fisiología , Adulto , Astenopía/fisiopatología , Biología Computacional , Humanos , Masculino , Red Nerviosa/fisiología , Ilusiones Ópticas/fisiología , Estimulación Luminosa , Percepción Visual/fisiología
19.
Brain ; 139(Pt 1): 276-91, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26493637

RESUMEN

Schizophrenia is increasingly recognized as a neurodevelopmental disorder with altered connectivity among brain networks. In the current study we examined large-scale network interactions in childhood-onset schizophrenia, a severe form of the disease with salient genetic and neurobiological abnormalities. Using a data-driven analysis of resting-state functional magnetic resonance imaging fluctuations, we characterized data from 19 patients with schizophrenia and 26 typically developing controls, group matched for age, sex, handedness, and magnitude of head motion during scanning. This approach identified 26 regions with decreased functional correlations in schizophrenia compared to controls. These regions were found to organize into two function-related networks, the first with regions associated with social and higher-level cognitive processing, and the second with regions involved in somatosensory and motor processing. Analyses of across- and within-network regional interactions revealed pronounced across-network decreases in functional connectivity in the schizophrenia group, as well as a set of across-network relationships with overall negative coupling indicating competitive or opponent network dynamics. Critically, across-network decreases in functional connectivity in schizophrenia predicted the severity of positive symptoms in the disorder, such as hallucinations and delusions. By contrast, decreases in functional connectivity within the social-cognitive network of regions predicted the severity of negative symptoms, such as impoverished speech and flattened affect. These results point toward the role that abnormal integration of sensorimotor and social-cognitive processing may play in the pathophysiology and symptomatology of schizophrenia.


Asunto(s)
Encéfalo/fisiopatología , Cognición , Esquizofrenia Infantil/fisiopatología , Esquizofrenia Infantil/psicología , Conducta Social , Adolescente , Estudios de Casos y Controles , Imagen Eco-Planar , Femenino , Neuroimagen Funcional , Humanos , Masculino , Vías Nerviosas/fisiopatología , Esquizofrenia Infantil/diagnóstico , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA