Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bio Protoc ; 13(17): e4796, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37719074

RESUMEN

In the field of molecular genetics, DNA extraction protocols and kits are sample-specific and proprietary, preventing lateral distribution among similar facilities from different sectors to alleviate supply shortages during a crisis. Expanding upon previous fast extraction protocols such as alkaline- and detergent-based ones, the use of boiling-hot water to rupture cells, virions, and nuclei, as proposed during the COVID-19 pandemic, might alleviate shortages and costs. Different soft, relatively abundant (highly enriched), and uncomplicated (genomically homogenous and with few inhibitors) biosamples are collected in 1.5 mL tubes, mixed with boiling-hot water, and stirred vigorously, so as to have membranes lysed and proteins deactivated; mechanical disruption may be used as well if necessary. Incubation in boiling water bath for 20-30 min follows. Depending on sample type and quantity, which affects the total extraction volume, 2-5 µL are pipetted off for direct PCR and the same volume for two decimal serial dilutions. The latter are intended to optimize the crude extract to a workable DNA/inhibitor concentration balance for direct PCR. Uncomplicated, highly enriched samples such as mycelial growth in fruits and human swab samples can be processed, contrary to complicated samples such as blood and physically unyielding samples such as plant tissue. The extract can be used for immediate PCR in both benchtop and portable thermocyclers, thus allowing nucleic acid amplification tests (NAAT) being performed in resource-limited settings with low cost and waste footprint or during prolonged crises, where supply chain failures may occur. Key features DNA extraction from different sample types using only boiling water and occasional mechanical assistance. Crude extract serially diluted twice, 10- and 100-fold, to bypass purification and quantification steps. Direct PCR for 2-10 µL of crude lysate and dilutions (conditional to sample type and quantity) to enhance probability of workable DNA-inhibitors' concentrations. Lowers the cost and curtails the overall footprint of testing to increase sustainability in field operations and in standard lab environments under supply chain derailment.

2.
OMICS ; 27(3): 116-126, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36809194

RESUMEN

The coronavirus disease-2019 (COVID-19) pandemic has raised the stakes for planetary health diagnostics. Because pandemics pose enormous burdens on biosurveillance and diagnostics, reduction of the logistical burdens of pandemics and ecological crises is essential. Moreover, the disruptive effects of catastrophic bioevents impact the supply chains in both highly populated urban centers and rural communities. One "upstream" focus of methodological innovation in biosurveillance is the footprint of Nucleic Acid Amplification Test (NAAT)-based assays. We report in this study a water-only DNA extraction, as an initial step in developing future protocols that may require few expendables, and with low environmental footprints, in terms of wet and solid laboratory waste. In the present work, boiling-hot distilled water was used as the main cell lysis agent for direct polymerase chain reactions (PCRs) on crude extracts. After evaluation (1) in blood and mouth swabs for human biomarker genotyping, and (2) in mouth swabs and plant tissue for generic bacterial or fungal detection, and using different combinations of extraction volume, mechanical assistance, and extract dilution, we found the method to be applicable in low-complexity samples, but not in high-complexity ones such as blood and plant tissue. In conclusion, this study examined the doability of a lean approach for template extraction in the case of NAAT-based diagnostics. Testing our approach with different biosamples, PCR settings, and instruments, including portable ones for COVID-19 or dispersed applications, warrant further research. Minimal resources analysis is a concept and practice, vital and timely for biosurveillance, integrative biology, and planetary health in the 21st century.


Asunto(s)
Biovigilancia , COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , Agua , Reacción en Cadena de la Polimerasa/métodos , ADN , Prueba de COVID-19
3.
OMICS ; 26(4): 204-217, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35255221

RESUMEN

The advances made by microbiome research call for new vocabulary and expansion of our thinking in microbiology. For example, the life-forms presenting in both unicellular and multicellular formats invite us to rethink microbial existence, organization, growth, pathogenicity, and therapeutics in the 21st century. A view of such populations as parts of single organisms with a loose, distributed multicellular organization, introduced here as a germ-ganism, rather than communities, might open up interesting prospects for diagnostics and therapeutics innovation. This study tested and further contextualized the concept of germ-ganism using solid cultures of bacteria and fungi. Based on our findings and the literature reviewed herein, we propose that germ-ganism has synergy with a systems medicine approach by broadening host-environment interactions from cells and microorganisms to a scale of biological ecosystems. Germ-ganism also brings about the possibility of studying the multilevel impacts of novel therapeutic agents within and across networks of microbial ecosystems. The germ-ganism would lend itself, in the long term, to a veritable biocybernetics system, while in the mid-term, we anticipate it will contribute to new diagnostics and therapeutics. Biosecurity applications would be immensely affected by germ-ganism. Industrial applications of germ-ganism are of interest as a more sustainable alternative to costly solutions such as tampered strains/microorganisms. In conclusion, germ-ganism is informed by lessons from microbiome research and invites rethinking microbial existence, organization, and growth as an organism. Germ-ganism has vast ramifications for understanding pathogenicity, and clinical, biosecurity, and biotechnology applications in the current historical moment of the COVID-19 pandemic and beyond.


Asunto(s)
COVID-19 , Microbiota , Bacterias , Humanos , Pandemias , Virulencia
4.
J Plant Physiol ; 267: 153542, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34638005

RESUMEN

Photosynthesis in host plants is significantly reduced by many virus families. The early detection of viral infection before the onset of visual symptoms in both directly and systemically infected leaves is critical in crop protection. Viral pathogens cause a variety of symptoms through modifications of chloroplast structure and function and the response of the photochemistry process is immediate. Therefore, chlorophyll fluorescence monitoring has been extensively investigated the last two decades as a tool for timely assessment of pathogenic threats. Alternatively, the analysis of Chla fluorescence transients offers several interlinked parameters which describe the fate of excitation energy round and through the photosystems. Additionally, OJIP fluorescence transients and leaf reflectance spectra methodologies serve for rapid screening of large number of samples. The objective of the present study was to achieve early detection of viral infection, integrating the multiparametric information of the Chla fluorescence transients and of the leaf reflectance spectra into one photochemical performance index. Infection decreased the maximum quantum yield of PSII (FV/FM), the effective quantum yield of PSII (ΦPSII), the CO2 assimilation rate (A) and the stomatal conductance (gs) in the studied TMV-pepper plant pathosystem, while non-photochemical quenching (NPQ) increased. Some parameters from the OJIP transients and the leaf reflectance spectra were significantly affected 24 h after infection, while others modified three to five days later. Similar results were obtained from systemically infected leaves but with one to three days hysteresis compared to inoculated leaves. Differences between healthy and infected leaves were marginal during the first 24 h post infection. The Integrated Biomarker Response tool was used to create a photochemical infection index (PINFI) which integrates the partial effects of infection on each fluorescence and reflectance index. The PINFI, which to the best of our knowledge is the first photochemical infection index created by the IBR method, discriminated reliably between the infected and healthy leaves of pepper plants from the first 24 h after infection with the TMV.


Asunto(s)
Capsicum/virología , Clorofila A , Fotosíntesis , Enfermedades de las Plantas/virología , Virus del Mosaico del Tabaco , Cloroplastos , Fluorescencia , Hojas de la Planta , Virus del Mosaico del Tabaco/aislamiento & purificación
5.
OMICS ; 25(8): 484-494, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34255557

RESUMEN

Pandemics and environmental crises evident from the first two decades of the 21st century call for methods innovation in biosurveillance and early detection of risk signals in planetary ecosystems. In crises conditions, conventional methods in public health, biosecurity, and environmental surveillance do not work well. In addition, the standard laboratory amenities and procedures may become unavailable, irrelevant, or simply not feasible, for example, owing to disruptions in logistics and process supply chains. The COVID-19 pandemic has been a wakeup call in this sense to reintroduce point-of-need diagnostics with an eye to limited resource settings and biosurveillance solutions. We report here a methodology innovation, a fast, scalable, and alkaline DNA extraction pipeline for emergency microbiomics biosurveillance. We believe that the presented methodology is well poised for effective, resilient, and anticipatory responses to future pandemics and ecological crises while contributing to microbiome science and point-of-need diagnostics in nonelective emergency contexts. The alkaline DNA extraction pipeline can usefully expand the throughput in emergencies by deployment or to allow backup in case of instrumentation failure in vital facilities. The need for distributed public health genomics surveillance is increasingly evident in the 21st century. This study makes a contribution to these ends broadly, and for future pandemic preparedness in particular. We call for innovation in biosurveillance methods that remain important existentially on a planet under pressure from unchecked human growth and breach of the boundaries between human and nonhuman animal habitats.


Asunto(s)
Biovigilancia/métodos , ADN/aislamiento & purificación , Técnicas Microbiológicas , Vigilancia en Salud Pública/métodos , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Técnicas Genéticas/economía , Humanos , Técnicas Microbiológicas/economía , Plantas/microbiología
6.
OMICS ; 24(8): 493-504, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32525758

RESUMEN

Modern microbiology and drug development are in a watershed moment with the advent of electroceuticals. In addition to genomics, electrical impulses in an organism are believed to contribute to tissue and cellular plasticity. Hence, electroceuticals or bioelectronics offers the promise to identify innovative approaches to treat human diseases. However, applications toward electromicrobiology are still limited and rare, despite the high potential to innovate the fields of both microbiology and therapeutics. For example, electric modalities for manipulating microbial growth are highly sustainable; can be combined with biopharmaceuticals, probiotics, and pharmacobiotics; and, thus, are well poised for use in medicine, public health, and ecology and diverse industries. We report here the introduction of a new research framework and technology platform for electroculturomics, by coupling standard solid-state mycological cultures with conductive treatment using a conformité Européene (CE-)-certified medical ionophoresis device. We share our experience with a diverse range of fungi that have been treated with the electroculturomics approach reported herein. We suggest that this line of inquiry can be extended to electrotranscriptomics and electrometabolomics by deploying electroculturomics in tandem with multi-omics approaches in the future. This article makes a specific contribution to fungal microbiology, and a broader contribution to advance the theory and practice of the field of electroculturomics emerging in 21st-century microbiology and ecology research.


Asunto(s)
Ecología , Hongos/fisiología , Ensayos Analíticos de Alto Rendimiento , Técnicas Microbiológicas , Microbiología , Ecología/métodos , Ecología/tendencias , Ensayos Analíticos de Alto Rendimiento/métodos , Microbiología/tendencias , Investigación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA