Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Ecol ; 32(21): 5709-5723, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37789741

RESUMEN

Insect pollination is fundamental for natural ecosystems and agricultural crops. The bumblebee species Bombus terrestris has become a popular choice for commercial crop pollination worldwide due to its effectiveness and ease of mass rearing. Bumblebee colonies are mass produced for the pollination of more than 20 crops and imported into over 50 countries including countries outside their native ranges, and the risk of invasion by commercial non-native bumblebees is considered an emerging issue for global conservation and biological diversity. Here, we use genome-wide data from seven wild populations close to and far from farms using commercial colonies, as well as commercial populations, to investigate the implications of utilizing commercial bumblebee subspecies in the UK. We find evidence for generally low levels of introgression between commercial and wild bees, with higher admixture proportions in the bees occurring close to farms. We identify genomic regions putatively involved in local and global adaptation, and genes in locally adaptive regions were found to be enriched for functions related to taste receptor activity, oxidoreductase activity, fatty acid and lipid biosynthetic processes. Despite more than 30 years of bumblebee colony importation into the UK, we observe low impact on the genetic integrity of local B. terrestris populations, but we highlight that even limited introgression might negatively affect locally adapted populations.


Asunto(s)
Ecosistema , Insectos , Abejas/genética , Animales , Polinización/genética , Biodiversidad
2.
J Therm Biol ; 116: 103672, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37531893

RESUMEN

Climate change is our most significant challenge in the 21st century and among the main drivers of biodiversity loss. Recent distributional shifts and declines in crucial pollinators, such as bumblebees, seem to be associated to this phenomenon. However, despite future climate projections on climate warming, few studies have assessed the ability of temperate bumblebees to acclimate to extreme weather events, such as heatwaves. This study estimates the upper critical thermal limits (Critical Thermal Maximum (CTmax) and Heat Coma Temperature (HCT)), of the bumblebee subspecies Bombus terrestris audax, and assesses whether CTmax increases following exposure to a simulated heatwave. The critical thermal maximum occurred between 48.9 and 52.7 °C, while the heat coma temperature varied between 50.7 and 53.4 °C. After measurement of HCT, around 23% of bees survived 24 h or longer, but coordination was never recovered. There was no significant association between upper critical thermal limits and body mass, which highlights the need to investigate other factors to comprehend the mechanisms behind thermal tolerance limits. Furthermore, the heatwave treatments had no significant effect on the CTmax of bumblebee workers, indicating no acclimation capacity of upper thermal tolerance to simulated heatwaves. Our study provides insights into the upper thermal tolerance limits of Bombus terrestris audax and reveals that exposure to heatwave-like events does not change the upper thermal tolerance of bees, highlighting the need to develop effective strategies that might enable them to cope with extreme weather events.


Asunto(s)
Coma , Calor , Animales , Abejas , Temperatura , Cambio Climático , Aclimatación
3.
J Anim Ecol ; 90(2): 415-431, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33084067

RESUMEN

Bumblebees are constantly exposed to a wide range of biotic and abiotic stresses which they must defend themselves against to survive. Pathogens and pesticides represent important stressors that influence bumblebee health, both when acting alone or in combination. To better understand bumblebee health, we need to investigate how these factors interact, yet experimental studies to date generally focus on only one or two stressors. The aim of this study is to evaluate how combined effects of four important stressors (the gut parasite Nosema ceranae, the neonicotinoid insecticide thiamethoxam, the pyrethroid insecticide cypermethrin and the EBI fungicide tebuconazole) interact to affect bumblebees at the individual and colony levels. We established seven treatment groups of colonies that we pulse exposed to different combinations of these stressors for 2 weeks under laboratory conditions. Colonies were subsequently placed in the field for 7 weeks to evaluate the effect of treatments on the prevalence of N. ceranae in inoculated bumblebees, expression levels of immunity and detoxification-related genes, food collection, weight gain, worker and male numbers, and production of worker brood and reproductives. Exposure to pesticide mixtures reduced food collection by bumblebees. All immunity-related genes were upregulated in the bumblebees inoculated with N. ceranae when they had not been exposed to pesticide mixtures, and bumblebees exposed to the fungicide and the pyrethroid were less likely to have N. ceranae. Combined exposure to the three-pesticide mixture and N. ceranae reduced bumblebee colony growth, and all treatments had detrimental effects on brood production. The groups exposed to the neonicotinoid insecticide produced 40%-76% fewer queens than control colonies. Our findings show that exposure to combinations of stressors that bumblebees frequently come into contact with have detrimental effects on colony health and performance and could therefore have an impact at the population level. These results also have significant implications for current practices and policies for pesticide risk assessment and use as the combinations tested here are frequently applied simultaneously in the field. Understanding the interactions between different stressors will be crucial for improving our ability to manage bee populations and for ensuring pollination services into the future.


Los abejorros están constantemente expuestos a una amplia gama de agentes estresantes bióticos y abióticos de los que deben defenderse para sobrevivir. Los patógenos y los pesticidas son importantes factores estresantes que influyen en la salud de los abejorros, tanto cuando actúan solos como en combinación. Para tener un mejor conocimiento sobre la salud de los abejorros, debemos investigar cómo interactúan estos factores estresantes, pero los estudios experimentales hasta la fecha generalmente se centran en estudiar solo uno o dos factores. El objetivo de nuestro estudio es evaluar cómo los efectos combinados de cuatro importantes factores estresantes (el parásito intestinal Nosema ceranae, el insecticida neonicotinoide tiametoxam, el insecticida piretroide cipermetrina y el fungicida EBI tebuconazol) interactúan para afectar a los abejorros a nivel individual y de colonia. Establecimos siete grupos de tratamiento de colonias de abejorros que expusimos a diferentes combinaciones de estos factores estresantes durante dos semanas en condiciones de laboratorio, y posteriormente se colocaron en el campo durante siete semanas, para evaluar el efecto de los tratamientos sobre la prevalencia de N. ceranae en abejorros inoculados, los niveles de expresión de genes relacionados con la inmunidad y la desintoxicación, la recolección de alimentos, el aumento de peso, el número de obreras y machos, y la producción de cría de obreras, machos y reinas. La exposición a mezclas de pesticidas redujo la recolección de alimentos por parte de los abejorros. Todos los genes relacionados con la inmunidad se sobre-expresaron en los abejorros inoculados con N. ceranae cuando no habían estado expuestos a mezclas de pesticidas, y los abejorros expuestos al fungicida y al piretroide presentaron menos probabilidades de tener N. ceranae. La exposición combinada a la mezcla de tres pesticidas y N. ceranae redujo el crecimiento de la colonia de abejorros y todos los tratamientos tuvieron efectos perjudiciales en la producción de crías. Los grupos expuestos al insecticida neonicotinoide produjeron entre un 40 y un 76% menos de reinas que las colonias control. Nuestros hallazgos muestran que la exposición a combinaciones de factores estresantes con los que los abejorros entran frecuentemente en contacto tiene efectos perjudiciales sobre la salud y el rendimiento de la colonia y, por lo tanto, podría tener un impacto a nivel poblacional. Estos resultados también tienen importantes implicaciones para las prácticas y políticas actuales de evaluación de riesgos y uso de plaguicidas, ya que las combinaciones probadas aquí se aplican con frecuencia simultáneamente en el campo. Comprender las interacciones entre los diferentes factores de estrés es fundamental para mejorar nuestra capacidad de gestión de las poblaciones de abejas y así garantizar los servicios de polinización en el futuro.


Asunto(s)
Insecticidas , Nosema , Animales , Abejas , Insecticidas/toxicidad , Masculino , Polinización , Reproducción
4.
Proc Natl Acad Sci U S A ; 115(47): 11883-11890, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30373844

RESUMEN

All life requires the capacity to recover from challenges that are as inevitable as they are unpredictable. Understanding this resilience is essential for managing the health of humans and their livestock. It has long been difficult to quantify resilience directly, forcing practitioners to rely on indirect static indicators of health. However, measurements from wearable electronics and other sources now allow us to analyze the dynamics of physiology and behavior with unsurpassed resolution. The resulting flood of data coincides with the emergence of novel analytical tools for estimating resilience from the pattern of microrecoveries observed in natural time series. Such dynamic indicators of resilience may be used to monitor the risk of systemic failure across systems ranging from organs to entire organisms. These tools invite a fundamental rethinking of our approach to the adaptive management of health and resilience.


Asunto(s)
Adaptación Fisiológica/fisiología , Salud/clasificación , Resiliencia Psicológica/clasificación , Animales , Conservación de los Recursos Naturales/métodos , Salud Holística , Humanos
5.
Ecol Lett ; 23(10): 1488-1498, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32808477

RESUMEN

Floral plantings are promoted to foster ecological intensification of agriculture through provisioning of ecosystem services. However, a comprehensive assessment of the effectiveness of different floral plantings, their characteristics and consequences for crop yield is lacking. Here we quantified the impacts of flower strips and hedgerows on pest control (18 studies) and pollination services (17 studies) in adjacent crops in North America, Europe and New Zealand. Flower strips, but not hedgerows, enhanced pest control services in adjacent fields by 16% on average. However, effects on crop pollination and yield were more variable. Our synthesis identifies several important drivers of variability in effectiveness of plantings: pollination services declined exponentially with distance from plantings, and perennial and older flower strips with higher flowering plant diversity enhanced pollination more effectively. These findings provide promising pathways to optimise floral plantings to more effectively contribute to ecosystem service delivery and ecological intensification of agriculture in the future.


Asunto(s)
Ecosistema , Polinización , Agricultura , Abejas , Biodiversidad , Europa (Continente) , Flores , Nueva Zelanda , América del Norte , Control de Plagas
6.
Environ Sci Technol ; 54(8): 5021-5030, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32092263

RESUMEN

Neonicotinoids are the most widely used insecticides worldwide, but there is mounting evidence demonstrating that they have adverse effects on nontarget organisms. However, little is known about the extent of environmental neonicotinoids contamination in China. In this study, a total of 693 honey samples from across China, from both Apis melifera and Apis cerana, were analyzed to examine neonicotinoid concentrations and their geographical distribution, and correlation with the primary plant species from which the honey was obtained. Furthermore, chronic and acute exposure risk and risk ranking for humans eating honey were investigated, and risks to bees were also considered. The results revealed that 40.8% of the samples contained at least one of the five neonicotinoids tested. Honeys from commercial crops were found to be more frequently contaminated with neonicotinoids than those from noncommercial crops. Honey samples from Apis mellifera were more frequently contaminated than those from Apis cerana. The concentrations of neonicotinoids found in honey overlapped with those that have been found to have significant adverse effects on honeybee health. The dietary risk assessments indicated that the levels of neonicotinoids detected in honey were likely to be safe for human consumption.


Asunto(s)
Apicultura , Insecticidas/análisis , Animales , Abejas , China , Neonicotinoides , Nitrocompuestos , Medición de Riesgo
7.
Environ Sci Technol ; 52(7): 3990-3996, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29553241

RESUMEN

Arable field margins are often sown with wildflowers to encourage pollinators and other beneficial or desirable insects such as bees and butterflies. Concern has been raised that these margins may be contaminated with systemic pesticides such as neonicotinoids used on the adjacent crop, and that this may negatively impact beneficial insects. The use of neonicotinoids has been linked to butterfly declines, and species such as the common blue butterfly ( Polyommatus icarus) that feed upon legumes commonly sown in arable field margins, may be exposed to such toxins. Here, we demonstrate that the larval food plants of P. icarus growing in an arable field margin adjacent to a wheat crop treated with the neonicotinoid clothianidin not only contain the pesticide at concentrations comparable to and sometimes higher than those found in foliage of treated crops (range 0.2-48 ppb) but also remain detectable at these levels for up to 21 months after sowing of the crop. Overall, our study demonstrates that nontarget herbivorous organisms in arable field margins are likely to be chronically exposed to neonicotinoids. Under laboratory conditions, exposure to clothianidin at 15 ppb (a field-realistic dose) or above reduced larval growth for the first 9 days of the experiment. Although there was evidence of clothianidin inducing mortality in larvae, with highest survival in control groups, the dose-response relationship was unclear. Our study suggests that larvae of this butterfly exhibit some deleterious sublethal and sometimes lethal impacts of exposure to clothianidin, but many larvae survive to adulthood even when exposed to high doses.


Asunto(s)
Mariposas Diurnas , Insecticidas , Animales , Abejas , Guanidinas , Neonicotinoides , Tiazoles
8.
Environ Sci Technol ; 52(6): 3329-3335, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29481746

RESUMEN

Neonicotinoid use has increased rapidly in recent years, with a global shift toward insecticide applications as seed coatings rather than aerial spraying. While the use of seed coatings can lessen the amount of overspray and drift, the near universal and prophylactic use of neonicotinoid seed coatings on major agricultural crops has led to widespread detections in the environment (pollen, soil, water, honey). Pollinators and aquatic insects appear to be especially susceptible to the effects of neonicotinoids with current research suggesting that chronic sublethal effects are more prevalent than acute toxicity. Meanwhile, evidence of clear and consistent yield benefits from the use of neonicotinoids remains elusive for most crops. Future decisions on neonicotinoid use will benefit from weighing crop yield benefits versus environmental impacts to nontarget organisms and considering whether there are more environmentally benign alternatives.


Asunto(s)
Insecticidas , Animales , Productos Agrícolas , Insectos , Neonicotinoides , Polen
9.
Environ Sci Technol ; 52(16): 9391-9402, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-29952204

RESUMEN

Concerns regarding the impact of neonicotinoid exposure on bee populations recently led to an EU-wide moratorium on the use of certain neonicotinoids on flowering crops. Currently, evidence regarding the impact, if any, the moratorium has had on bees' exposure is limited. We sampled pollen and nectar from bumblebee colonies in rural and peri-urban habitats in three U.K. regions: Stirlingshire, Hertfordshire, and Sussex. Colonies were sampled over three years: prior to the ban (2013), during the initial implementation when some seed-treated winter-sown oilseed rape was still grown (2014), and following the ban (2015). To compare species-level differences, in 2014 only, honeybee colonies in rural habitats were also sampled. Over half of all samples were found to be contaminated ( n = 408), with thiamethoxam being the compound detected at the highest concentrations in honeybee- (up to 2.29 ng/g in nectar in 2014, median ≤ 0.1 ng/g, n = 79) and bumblebee-collected pollen and nectar (up to 38.77 ng/g in pollen in 2013, median ≤ 0.12 ng/g, n = 76). Honeybees were exposed to higher concentrations of neonicotinoids than bumblebees in 2014. While neonicotinoid exposure for rural bumblebees declined post-ban (2015), suggesting a positive impact of the moratorium, the risk of neonicotinoid exposure for bumblebees in peri-urban habitats remained largely the same between 2013 and 2015.


Asunto(s)
Insecticidas , Néctar de las Plantas , Animales , Abejas , Productos Agrícolas , Neonicotinoides , Polen , Tiametoxam
10.
Conserv Biol ; 31(1): 24-29, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27624925

RESUMEN

Research on urban insect pollinators is changing views on the biological value and ecological importance of cities. The abundance and diversity of native bee species in urban landscapes that are absent in nearby rural lands evidence the biological value and ecological importance of cities and have implications for biodiversity conservation. Lagging behind this revised image of the city are urban conservation programs that historically have invested in education and outreach rather than programs designed to achieve high-priority species conservation results. We synthesized research on urban bee species diversity and abundance to determine how urban conservation could be repositioned to better align with new views on the ecological importance of urban landscapes. Due to insect pollinators' relatively small functional requirements-habitat range, life cycle, and nesting behavior-relative to larger mammals, we argue that pollinators put high-priority and high-impact urban conservation within reach. In a rapidly urbanizing world, transforming how environmental managers view the city can improve citizen engagement and contribute to the development of more sustainable urbanization.


Asunto(s)
Abejas , Ciudades , Conservación de los Recursos Naturales , Urbanización , Animales , Biodiversidad , Ecosistema , Insectos , Mamíferos
11.
Environ Sci Technol ; 51(3): 1727-1732, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28079366

RESUMEN

The impacts of pesticides, and in particular of neonicotinoids, on bee health remain much debated. Many studies describing negative effects have been criticized as the experimental protocol did not perfectly simulate real-life field scenarios. Here, we placed free-flying bumblebee colonies next to raspberry crops that were either untreated or treated with the neonicotinoid thiacloprid as part of normal farming practice. Colonies were exposed to the raspberry crops for a two week period before being relocated to either a flower-rich or flower-poor site. Overall, exposed colonies were more likely to die prematurely, and those that survived reached a lower final weight and produced 46% fewer reproductives than colonies placed at control farms. The impact was more marked at the flower-rich site (all colonies performed poorly at the flower poor site). Analysis of nectar and pollen stores from bumblebee colonies placed at the same raspberry farms revealed thiacloprid residues of up to 771 ppb in pollen and up to 561 ppb in nectar. The image of thiacloprid as a relatively benign neonicotinoid should now be questioned.


Asunto(s)
Insecticidas , Nitrocompuestos , Animales , Abejas , Plaguicidas , Néctar de las Plantas/química , Polen/química
12.
Proc Biol Sci ; 283(1828)2016 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-27053744

RESUMEN

Learning and memory are crucial functions which enable insect pollinators to efficiently locate and extract floral rewards. Exposure to pesticides or infection by parasites may cause subtle but ecologically important changes in cognitive functions of pollinators. The potential interactive effects of these stressors on learning and memory have not yet been explored. Furthermore, sensitivity to stressors may differ between species, but few studies have compared responses in different species. Here, we show that chronic exposure to field-realistic levels of the neonicotinoid clothianidin impaired olfactory learning acquisition in honeybees, leading to potential impacts on colony fitness, but not in bumblebees. Infection by the microsporidian parasite Nosema ceranae slightly impaired learning in honeybees, but no interactive effects were observed. Nosema did not infect bumblebees (3% infection success). Nevertheless, Nosema-treated bumblebees had a slightly lower rate of learning than controls, but faster learning in combination with neonicotinoid exposure. This highlights the potential for complex interactive effects of stressors on learning. Our results underline that one cannot readily extrapolate findings from one bee species to others. This has important implications for regulatory risk assessments which generally use honeybees as a model for all bees.


Asunto(s)
Abejas/efectos de los fármacos , Guanidinas/toxicidad , Insecticidas/toxicidad , Tiazoles/toxicidad , Animales , Abejas/parasitología , Abejas/fisiología , Aprendizaje/efectos de los fármacos , Neonicotinoides , Nosema/fisiología , Medición de Riesgo , Olfato/efectos de los fármacos , Especificidad de la Especie
13.
Sci Prog ; 99(3): 312-326, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28742491

RESUMEN

Bee declines have received much attention of late, but there is considerable debate and confusion as to the extent, significance and causes of declines. In part, this reflects conflation of data for domestic honeybees, numbers of which are largely driven by economic factors, with those for wild bees, many of which have undergone marked range contractions but for the majority of which we have no good data on population size. There is no doubt that bees are subject to numerous pressures in the modern world. The abundance and diversity of flowers has declined along with availability of suitable nest sites, bees are chronically exposed to cocktails of agrochemicals, and they are simultaneously exposed to novel parasites and pathogens accidentally spread by humans. Climate change is likely to exacerbate these problems in the future, particularly for cool- climate specialists such as bumblebees. Stressors do not act in isolation; for example pesticide exposure can impair both detoxification mechanisms and immune responses, rendering bees more susceptible to parasites. It seems certain that chronic exposure to multiple, interacting stressors is driving honeybee colony losses and declines of wild pollinators. Bees have a high profile and so their travails attract attention, but these same stressors undoubtedly bear upon other wild organisms, many of which are not monitored and have few champions. Those wild insects for which we do have population data (notably butterflies and moths) are overwhelmingly also in decline. We argue that bee declines are indicators of pervasive and ongoing environmental damage that is likely to impact broadly on biodiversity and the ecosystem services it provides.

14.
Parasitology ; 143(3): 358-65, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26646676

RESUMEN

Many pollinators are currently suffering from declines, diminishing their gene pool and increasing their vulnerability to parasites. Recently, an increasing diversity of parasites has been recorded in bumblebees, yet for many, knowledge of their virulence and hence the risk their presence poses, is lacking. The deformed wing virus (DWV), known to be ubiquitous in honey bees, has now been detected in bumblebees. In addition, the neogregarine Apicystis bombi has been discovered to be more prevalent than previously thought. Here, we assess for the first time the lethal and sublethal effects of these parasites during single and mixed infections of worker bumblebees (Bombus terrestris). Fifteen days after experimental exposure, 22% of bees exposed to A. bombi, 50% of bees exposed to DWV and 86% of bees exposed to both parasites had died. Bumblebees that had ingested A. bombi had increased sucrose sensitivity (SS) and a lower lipid:body size ratio than control bees. While dual infected bumblebees showed no increase in SS. Overall, we find that A. bombi exhibits both lethal and sublethal effects. DWV causes lethal effect and may reduce the sub lethal effects imposed by A. bombi. The results show that both parasites have significant, negative effects on bumblebee health, making them potentially of conservation concern.


Asunto(s)
Apicomplexa/fisiología , Abejas/parasitología , Abejas/virología , Picornaviridae/fisiología , Animales , Abejas/química , Abejas/efectos de los fármacos , Tamaño Corporal/fisiología , Lípidos/análisis , ARN Ribosómico 18S/genética , Sacarosa/farmacología , Análisis de Supervivencia
16.
Proc Biol Sci ; 282(1813): 20151371, 2015 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-26246556

RESUMEN

The dispersal of parasites is critical for epidemiology, and the interspecific vectoring of parasites when species share resources may play an underappreciated role in parasite dispersal. One of the best examples of such a situation is the shared use of flowers by pollinators, but the importance of flowers and interspecific vectoring in the dispersal of pollinator parasites is poorly understood and frequently overlooked. Here, we use an experimental approach to show that during even short foraging periods of 3 h, three bumblebee parasites and two honeybee parasites were dispersed effectively onto flowers by their hosts, and then vectored readily between flowers by non-host pollinator species. The results suggest that flowers are likely to be hotspots for the transmission of pollinator parasites and that considering potential vector, as well as host, species will be of general importance for understanding the distribution and transmission of parasites in the environment and between pollinators.


Asunto(s)
Apicomplexa/fisiología , Abejas/parasitología , Flores/fisiología , Interacciones Huésped-Parásitos , Nosema/fisiología , Trypanosomatina/fisiología , Animales , Campanulaceae/fisiología , Polinización , Especificidad de la Especie , Viola/fisiología
17.
Mol Ecol ; 24(8): 1668-80, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25753513

RESUMEN

Changes in agricultural practice across Europe and North America have been associated with range contractions and local extinction of bumblebees (Bombus spp.). A number of agri-environment schemes have been implemented to halt and reverse these declines, predominantly revolving around the provision of additional forage plants. Although it has been demonstrated that these schemes can attract substantial numbers of foraging bumblebees, it remains unclear to what extent they actually increase bumblebee populations. We used standardized transect walks and molecular techniques to compare the size of bumblebee populations between Higher Level Stewardship (HLS) farms implementing pollinator-friendly schemes and Entry Level Stewardship (ELS) control farms. Bumblebee abundance on the transect walks was significantly higher on HLS farms than ELS farms. Molecular analysis suggested maximum foraging ranges of 566 m for Bombus hortorum, 714 m for B. lapidarius, 363 m for B. pascuorum and 799 m for B. terrestris. Substantial differences in maximum foraging range were found within bumblebee species between farm types. Accounting for foraging range differences, B. hortorum (47 vs 13 nests/km(2) ) and B. lapidarius (45 vs 22 nests/km(2) ) were found to nest at significantly greater densities on HLS farms than ELS farms. There were no significant differences between farm type for B. terrestris (88 vs 38 nests/km(2) ) and B. pascuorum (32 vs 39 nests/km(2) ). Across all bumblebee species, HLS management had a significantly positive effect on bumblebee nest density. These results show that targeted agri-environment schemes that increase the availability of suitable forage can significantly increase the size of wild bumblebee populations.


Asunto(s)
Agricultura/métodos , Abejas , Conservación de los Recursos Naturales/métodos , Densidad de Población , Animales , Conducta Apetitiva , Abejas/genética , Inglaterra
18.
Environ Sci Technol ; 49(21): 12731-40, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26439915

RESUMEN

In recent years, an intense debate about the environmental risks posed by neonicotinoids, a group of widely used, neurotoxic insecticides, has been joined. When these systemic compounds are applied to seeds, low concentrations are subsequently found in the nectar and pollen of the crop, which are then collected and consumed by bees. Here we demonstrate that the current focus on exposure to pesticides via the crop overlooks an important factor: throughout spring and summer, mixtures of neonicotinoids are also found in the pollen and nectar of wildflowers growing in arable field margins, at concentrations that are sometimes even higher than those found in the crop. Indeed, the large majority (97%) of neonicotinoids brought back in pollen to honey bee hives in arable landscapes was from wildflowers, not crops. Both previous and ongoing field studies have been based on the premise that exposure to neonicotinoids would occur only during the blooming period of flowering crops and that it may be diluted by bees also foraging on untreated wildflowers. Here, we show that exposure is likely to be higher and more prolonged than currently recognized because of widespread contamination of wild plants growing near treated crops.


Asunto(s)
Anabasina/toxicidad , Abejas/metabolismo , Exposición a Riesgos Ambientales/análisis , Flores/química , Animales , Brassica rapa/química , Productos Agrícolas/química , Hordeum/química , Insecticidas/análisis , Néctar de las Plantas/química , Polen/química , Semillas/química , Suelo/química , Triticum/química
19.
Anal Bioanal Chem ; 407(26): 8151-62, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26329280

RESUMEN

To accurately estimate exposure of bees to pesticides, analytical methods are needed to enable quantification of nanogram/gram (ng/g) levels of contaminants in small samples of pollen or the individual insects. A modified QuEChERS extraction method coupled with ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) analysis was tested to quantify residues of 19 commonly used neonicotinoids and fungicides and the synergist, piperonyl butoxide, in 100 mg samples of pollen and in samples of individual bumblebees (Bombus terrestris). Final recoveries ranged from 71 to 102 % for most compounds with a repeatability of below 20 % for both pollen and bumblebee extracts spiked at 5 and 40 ng/g. The method enables the detection of all compounds at sub-ng/g levels in both matrices and the method detection limits (MDL) ranged from 0.01 to 0.84 ng/g in pollen and 0.01 to 0.96 ng/g in individual bumblebees. Using this method, mixtures of neonicotinoids (thiamethoxam, clothianidin, imidacloprid and thiacloprid) and fungicides (carbendazim, spiroxamine, boscalid, tebuconazole, prochloraz, metconazole, fluoxastrobin, pyraclostrobin and trifloxystrobin) were detected in pollens of field bean, strawberry and raspberry at concentrations ranging from MDL, and in some bees, the fungicides carbendazim, boscalid, tebuconazole, flusilazole and metconazole were present at concentrations between 0.80 to 30 ng/g. This new method allows the analysis of mixtures of neonicotinoids and fungicides at trace levels in small quantities of pollen and individual bumblebees and thus will facilitate exposure assessment studies.


Asunto(s)
Abejas/química , Productos Agrícolas/química , Fungicidas Industriales/análisis , Insecticidas/análisis , Polen/química , Espectrometría de Masas en Tándem/métodos , Animales , Cromatografía Líquida de Alta Presión/métodos , Fragaria/química , Guanidinas/análisis , Imidazoles/análisis , Límite de Detección , Neonicotinoides , Nitrocompuestos/análisis , Oxazinas/análisis , Piridinas/análisis , Rubus/química , Tiametoxam , Tiazinas/análisis , Tiazoles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA