Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 54(9): 2143-2158.e15, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34453881

RESUMEN

Neutralizing antibodies (NAbs) are effective in treating COVID-19, but the mechanism of immune protection is not fully understood. Here, we applied live bioluminescence imaging (BLI) to monitor the real-time effects of NAb treatment during prophylaxis and therapy of K18-hACE2 mice intranasally infected with SARS-CoV-2-nanoluciferase. Real-time imaging revealed that the virus spread sequentially from the nasal cavity to the lungs in mice and thereafter systemically to various organs including the brain, culminating in death. Highly potent NAbs from a COVID-19 convalescent subject prevented, and also effectively resolved, established infection when administered within three days. In addition to direct neutralization, depletion studies indicated that Fc effector interactions of NAbs with monocytes, neutrophils, and natural killer cells were required to effectively dampen inflammatory responses and limit immunopathology. Our study highlights that both Fab and Fc effector functions of NAbs are essential for optimal in vivo efficacy against SARS-CoV-2.


Asunto(s)
Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Encéfalo/patología , COVID-19/inmunología , Pulmón/patología , SARS-CoV-2/fisiología , Testículo/patología , Enzima Convertidora de Angiotensina 2/genética , Animales , Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/genética , Encéfalo/virología , COVID-19/terapia , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Luciferasas/genética , Mediciones Luminiscentes , Pulmón/virología , Masculino , Ratones , Ratones Transgénicos , Testículo/virología
2.
J Virol ; 96(17): e0063622, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35980207

RESUMEN

Binding to the host cell receptors CD4 and CCR5/CXCR4 triggers conformational changes in the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer that promote virus entry. CD4 binding allows the gp120 exterior Env to bind CCR5/CXCR4 and induces a short-lived prehairpin intermediate conformation in the gp41 transmembrane Env. Small-molecule CD4-mimetic compounds (CD4mcs) bind within the conserved Phe-43 cavity of gp120, near the binding site for CD4. CD4mcs like BNM-III-170 inhibit HIV-1 infection by competing with CD4 and by prematurely activating Env, leading to irreversible inactivation. In cell culture, we selected and analyzed variants of the primary HIV-1AD8 strain resistant to BNM-III-170. Two changes (S375N and I424T) in gp120 residues that flank the Phe-43 cavity each conferred an ~5-fold resistance to BNM-III-170 with minimal fitness cost. A third change (E64G) in layer 1 of the gp120 inner domain resulted in ~100-fold resistance to BNM-III-170, ~2- to 3-fold resistance to soluble CD4-Ig, and a moderate decrease in viral fitness. The gp120 changes additively or synergistically contributed to BNM-III-170 resistance. The sensitivity of the Env variants to BNM-III-170 inhibition of virus entry correlated with their sensitivity to BNM-III-170-induced Env activation and shedding of gp120. Together, the S375N and I424T changes, but not the E64G change, conferred >100-fold and 33-fold resistance to BMS-806 and BMS-529 (temsavir), respectively, potent HIV-1 entry inhibitors that block Env conformational transitions. These studies identify pathways whereby HIV-1 can develop resistance to CD4mcs and conformational blockers, two classes of entry inhibitors that target the conserved gp120 Phe-43 cavity. IMPORTANCE CD4-mimetic compounds (CD4mcs) and conformational blockers like BMS-806 and BMS-529 (temsavir) are small-molecule inhibitors of human immunodeficiency virus (HIV-1) entry into host cells. Although CD4mcs and conformational blockers inhibit HIV-1 entry by different mechanisms, they both target a pocket on the viral envelope glycoprotein (Env) spike that is used for binding to the receptor CD4 and is highly conserved among HIV-1 strains. Our study identifies changes near this pocket that can confer various levels of resistance to the antiviral effects of a CD4mc and conformational blockers. We relate the antiviral potency of a CD4mc against this panel of HIV-1 variants to the ability of the CD4mc to activate changes in Env conformation and to induce the shedding of the gp120 exterior Env from the spike. These findings will guide efforts to improve the potency and breadth of small-molecule HIV-1 entry inhibitors.


Asunto(s)
Antígenos CD4 , Farmacorresistencia Viral , Glicoproteínas , Guanidinas , Indenos , Mutación , Productos del Gen env del Virus de la Inmunodeficiencia Humana , Sitios de Unión/genética , Antígenos CD4/química , Antígenos CD4/metabolismo , Farmacorresistencia Viral/genética , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Guanidinas/química , Guanidinas/farmacología , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/metabolismo , Proteína gp41 de Envoltorio del VIH/química , Proteína gp41 de Envoltorio del VIH/genética , Proteína gp41 de Envoltorio del VIH/metabolismo , Inhibidores de Fusión de VIH/química , Inhibidores de Fusión de VIH/farmacología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/química , VIH-1/efectos de los fármacos , VIH-1/metabolismo , Humanos , Indenos/química , Indenos/farmacología , Conformación Proteica/efectos de los fármacos , Receptores del VIH/química , Receptores del VIH/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo
3.
J Biol Chem ; 297(4): 101151, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34478710

RESUMEN

The seasonal nature of outbreaks of respiratory viral infections with increased transmission during low temperatures has been well established. Accordingly, temperature has been suggested to play a role on the viability and transmissibility of SARS-CoV-2, the virus responsible for the COVID-19 pandemic. The receptor-binding domain (RBD) of the Spike glycoprotein is known to bind to its host receptor angiotensin-converting enzyme 2 (ACE2) to initiate viral fusion. Using biochemical, biophysical, and functional assays to dissect the effect of temperature on the receptor-Spike interaction, we observed a significant and stepwise increase in RBD-ACE2 affinity at low temperatures, resulting in slower dissociation kinetics. This translated into enhanced interaction of the full Spike glycoprotein with the ACE2 receptor and higher viral attachment at low temperatures. Interestingly, the RBD N501Y mutation, present in emerging variants of concern (VOCs) that are fueling the pandemic worldwide (including the B.1.1.7 (α) lineage), bypassed this requirement. This data suggests that the acquisition of N501Y reflects an adaptation to warmer climates, a hypothesis that remains to be tested.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/química , COVID-19/patología , COVID-19/virología , Calorimetría , Humanos , Interferometría , Polimorfismo de Nucleótido Simple , Unión Proteica , Estructura Cuaternaria de Proteína , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/química , Temperatura , Termodinámica
4.
Transfusion ; 62(9): 1779-1790, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35919021

RESUMEN

BACKGROUND: Plateletpheresis involves platelet separation and collection from whole blood while other blood cells are returned to the donor. Because platelets are replaced faster than red blood cells, as many as 24 donations can be done annually. However, some frequent apheresis platelet donors (>20 donations annually) display severe plateletpheresis-associated lymphopenia; in particular, CD4+ T but not B cell numbers are decreased. COVID-19 vaccination thereby provides a model to assess whether lymphopenic platelet donors present compromised humoral immune responses. STUDY DESIGN AND METHODS: We assessed vaccine responses following 2 doses of COVID-19 vaccination in a cohort of 43 plateletpheresis donors with a range of pre-vaccination CD4+ T cell counts (76-1537 cells/µl). In addition to baseline T cell measurements, antibody binding assays to full-length Spike and the Receptor Binding Domain (RBD) were performed pre- and post-vaccination. Furthermore, pseudo-particle neutralization and antibody-dependent cellular cytotoxicity assays were conducted to measure antibody functionality. RESULTS: Participants were stratified into two groups: <400 CD4/µl (n = 27) and ≥ 400 CD4/µl (n = 16). Following the first dose, 79% seroconverted within the <400 CD4/µl group compared to 87% in the ≥400 CD4/µl group; all donors were seropositive post-second dose with significant increases in antibody levels. Importantly differences in CD4+ T cell levels minimally impacted neutralization, Spike recognition, and IgG Fc-mediated effector functions. DISCUSSION: Overall, our results indicate that lymphopenic plateletpheresis donors do not exhibit significant immune dysfunction; they have retained the T and B cell functionality necessary for potent antibody responses after vaccination.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Linfopenia , Donantes de Sangre , COVID-19/prevención & control , COVID-19/terapia , Vacunas contra la COVID-19/efectos adversos , Humanos , Linfopenia/etiología , Recuento de Plaquetas , Plaquetoferesis/métodos
5.
CMAJ ; 193(22): E793-E800, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-33980499

RESUMEN

BACKGROUND: Patients receiving in-centre hemodialysis are at high risk of exposure to SARS-CoV-2 and death if infected. One dose of the BNT162b2 SARS-CoV-2 vaccine is efficacious in the general population, but responses in patients receiving hemodialysis are uncertain. METHODS: We obtained serial plasma from patients receiving hemodialysis and health care worker controls before and after vaccination with 1 dose of the BNT162b2 mRNA vaccine, as well as convalescent plasma from patients receiving hemodialysis who survived COVID-19. We measured anti-receptor binding domain (RBD) immunoglobulin G (IgG) levels and stratified groups by evidence of previous SARS-CoV-2 infection. RESULTS: Our study included 154 patients receiving hemodialysis (135 without and 19 with previous SARS-CoV-2 infection), 40 controls (20 without and 20 with previous SARS-CoV-2 infection) and convalescent plasma from 16 patients. Among those without previous SARS-CoV-2 infection, anti-RBD IgG was undetectable at 4 weeks in 75 of 131 (57%, 95% confidence interval [CI] 47% to 65%) patients receiving hemodialysis, compared with 1 of 20 (5%, 95% CI 1% to 23%) controls (p < 0.001). No patient with nondetectable levels at 4 weeks developed anti-RBD IgG by 8 weeks. Results were similar in non-immunosuppressed and younger individuals. Three patients receiving hemodialysis developed severe COVID-19 after vaccination. Among those with previous SARS-CoV-2 infection, median anti-RBD IgG levels at 8 weeks in patients receiving hemodialysis were similar to controls at 3 weeks (p = 0.3) and to convalescent plasma (p = 0.8). INTERPRETATION: A single dose of BNT162b2 vaccine failed to elicit a humoral immune response in most patients receiving hemodialysis without previous SARS-CoV-2 infection, even after prolonged observation. In those with previous SARS-CoV-2 infection, the antibody response was delayed. We advise that patients receiving hemodialysis be prioritized for a second BNT162b2 dose at the recommended 3-week interval.


Asunto(s)
Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/inmunología , Inmunoglobulina G/sangre , Diálisis Renal , Adulto , Anticuerpos Antivirales/biosíntesis , Vacuna BNT162 , COVID-19/inmunología , Femenino , Humanos , Inmunoglobulina G/biosíntesis , Inmunoglobulina M/biosíntesis , Inmunoglobulina M/sangre , Fallo Renal Crónico/terapia , Masculino , Persona de Mediana Edad , Factores de Riesgo , Glicoproteína de la Espiga del Coronavirus/inmunología , Factores de Tiempo , Adulto Joven
6.
Mol Cell Proteomics ; 11(11): 1365-77, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22915823

RESUMEN

After their formation at the cell surface, phagosomes become fully functional through a complex maturation process involving sequential interactions with various intracellular organelles. In the last decade, series of data indicated that some of the phagosome functional properties occur in specialized membrane microdomains. The molecules associated with membrane microdomains, as well as the organization of these structures during phagolysosome biogenesis are largely unknown. In this study, we combined proteomics and bioinformatics analyses to characterize the dynamic association of proteins to maturing phagosomes. Our data indicate that groups of proteins shuffle from detergent-soluble to detergent-resistant membrane microdomains during maturation, supporting a model in which the modulation of the phagosome functional properties involves an important reorganization of the phagosome proteome by the coordinated spatial segregation of proteins.


Asunto(s)
Evolución Molecular , Lisosomas/metabolismo , Microdominios de Membrana/metabolismo , Fagosomas/metabolismo , Proteómica/métodos , Animales , Línea Celular , Detergentes/farmacología , Lisosomas/efectos de los fármacos , Microdominios de Membrana/efectos de los fármacos , Ratones , Péptidos/metabolismo , Fagosomas/efectos de los fármacos , Proteoma/metabolismo , Reproducibilidad de los Resultados , Homología de Secuencia de Aminoácido , Factores de Tiempo
7.
Cell Chem Biol ; 30(5): 540-552.e6, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-36958337

RESUMEN

While HIV-1-mediated CD4 downregulation protects infected cells from antibody-dependent cellular cytotoxicity (ADCC), shed gp120 binds to CD4 on uninfected bystander CD4+ T cells, sensitizing them to ADCC mediated by HIV+ plasma. Soluble gp120-CD4 interaction on multiple immune cells also triggers a cytokine burst. The small molecule temsavir acts as an HIV-1 attachment inhibitor by preventing envelope glycoprotein (Env)-CD4 interaction and alters the overall antigenicity of Env by affecting its processing and glycosylation. Here we show that temsavir also blocks the immunomodulatory activities of shed gp120. Temsavir prevents shed gp120 from interacting with uninfected bystander CD4+ cells, protecting them from ADCC responses and preventing a cytokine burst. Mechanistically, this depends on temsavir's capacity to prevent soluble gp120-CD4 interaction, to reduce gp120 shedding, and to alter gp120 antigenicity. This suggests that the clinical benefits provided by temsavir could extend beyond blocking viral entry.


Asunto(s)
VIH-1 , Linfocitos T CD4-Positivos/metabolismo , Regulación hacia Abajo , Proteína gp120 de Envoltorio del VIH , Citocinas/metabolismo
8.
Cell Rep ; 42(1): 111998, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36656710

RESUMEN

Several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants have recently emerged, becoming the dominant circulating strains in many countries. These variants contain a large number of mutations in their spike glycoprotein, raising concerns about vaccine efficacy. In this study, we evaluate the ability of plasma from a cohort of individuals that received three doses of mRNA vaccine to recognize and neutralize these Omicron subvariant spikes. We observed that BA.4/5 and BQ.1.1 spikes are markedly less recognized and neutralized compared with the D614G and other Omicron subvariant spikes tested. Also, individuals who have been infected before or after vaccination present better humoral responses than SARS-CoV-2-naive vaccinated individuals, thus indicating that hybrid immunity generates better humoral responses against these subvariants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/prevención & control , Vacunas Sintéticas , Mutación , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Vacunas de ARNm
9.
iScience ; 26(1): 105783, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36514310

RESUMEN

Neutralizing antibodies (NAbs) hold great promise for clinical interventions against SARS-CoV-2 variants of concern (VOCs). Understanding NAb epitope-dependent antiviral mechanisms is crucial for developing vaccines and therapeutics against VOCs. Here we characterized two potent NAbs, EH3 and EH8, isolated from an unvaccinated pediatric patient with exceptional plasma neutralization activity. EH3 and EH8 cross-neutralize the early VOCs and mediate strong Fc-dependent effector activity in vitro. Structural analyses of EH3 and EH8 in complex with the receptor-binding domain (RBD) revealed the molecular determinants of the epitope-driven protection and VOC evasion. While EH3 represents the prevalent IGHV3-53 NAb whose epitope substantially overlaps with the ACE2 binding site, EH8 recognizes a narrow epitope exposed in both RBD-up and RBD-down conformations. When tested in vivo, a single-dose prophylactic administration of EH3 fully protected stringent K18-hACE2 mice from lethal challenge with Delta VOC. Our study demonstrates that protective NAbs responses converge in pediatric and adult SARS-CoV-2 patients.

10.
Cell Rep Med ; 4(3): 100955, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36863335

RESUMEN

Cellular immune defects associated with suboptimal responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccination in people receiving hemodialysis (HD) are poorly understood. We longitudinally analyze antibody, B cell, CD4+, and CD8+ T cell vaccine responses in 27 HD patients and 26 low-risk control individuals (CIs). The first two doses elicit weaker B cell and CD8+ T cell responses in HD than in CI, while CD4+ T cell responses are quantitatively similar. In HD, a third dose robustly boosts B cell responses, leads to convergent CD8+ T cell responses, and enhances comparatively more T helper (TH) immunity. Unsupervised clustering of single-cell features reveals phenotypic and functional shifts over time and between cohorts. The third dose attenuates some features of TH cells in HD (tumor necrosis factor alpha [TNFα]/interleukin [IL]-2 skewing), while others (CCR6, CXCR6, programmed cell death protein 1 [PD-1], and HLA-DR overexpression) persist. Therefore, a third vaccine dose is critical to achieving robust multifaceted immunity in hemodialysis patients, although some distinct TH characteristics endure.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , SARS-CoV-2/genética , COVID-19/prevención & control , Linfocitos T CD4-Positivos , Vacunas de ARNm
11.
Kidney360 ; 3(10): 1763-1768, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36514720

RESUMEN

Patients receiving hemodialysis (HD) have more inflammatory monocytes and less plasmacytoid dendritic cells (DCs) compared with healthy controls.Patients on HD who have a poor antibody response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine had fewer monocyte-derived DCs and conventional DCs compared with good responders.The defects in antigen presentation might be possible therapeutic targets to increase vaccine efficacy in HD patients.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , SARS-CoV-2 , COVID-19/prevención & control , Inmunidad Innata , Diálisis Renal/efectos adversos
12.
Viruses ; 14(1)2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35062348

RESUMEN

The rapid emergence of SARS-CoV-2 variants is fueling the recent waves of the COVID-19 pandemic. Here, we assessed ACE2 binding and antigenicity of Mu (B.1.621) and A.2.5 Spikes. Both these variants carry some mutations shared by other emerging variants. Some of the pivotal mutations such as N501Y and E484K in the receptor-binding domain (RBD) detected in B.1.1.7 (Alpha), B.1.351 (Beta) and P.1 (Gamma) are now present within the Mu variant. Similarly, the L452R mutation of B.1.617.2 (Delta) variant is present in A.2.5. In this study, we observed that these Spike variants bound better to the ACE2 receptor in a temperature-dependent manner. Pseudoviral particles bearing the Spike of Mu were similarly neutralized by plasma from vaccinated individuals than those carrying the Beta (B.1.351) and Delta (B.1.617.2) Spikes. Altogether, our results indicate the importance of measuring critical parameters such as ACE2 interaction, plasma recognition and neutralization ability of each emerging variant.


Asunto(s)
SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Células HEK293 , Humanos , Mutación , Pruebas de Neutralización , Unión Proteica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Temperatura
13.
Viruses ; 14(10)2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36298733

RESUMEN

SARS-CoV-2 continues to infect millions of people worldwide. The subvariants arising from the variant-of-concern (VOC) Omicron include BA.1, BA.1.1, BA.2, BA.2.12.1, BA.4, and BA.5. All possess multiple mutations in their Spike glycoprotein, notably in its immunogenic receptor-binding domain (RBD), and present enhanced viral transmission. The highly mutated Spike glycoproteins from these subvariants present different degrees of resistance to recognition and cross-neutralisation by plasma from previously infected and/or vaccinated individuals. We have recently shown that the temperature affects the interaction between the Spike and its receptor, the angiotensin converting enzyme 2 (ACE2). The affinity of RBD for ACE2 is significantly increased at lower temperatures. However, whether this is also observed with the Spike of Omicron and sub-lineages is not known. Here we show that, similar to other variants, Spikes from Omicron sub-lineages bind better the ACE2 receptor at lower temperatures. Whether this translates into enhanced transmission during the fall and winter seasons remains to be determined.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Humanos , SARS-CoV-2/genética , Temperatura , Glicoproteína de la Espiga del Coronavirus/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Mutación
14.
Viruses ; 14(3)2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35336940

RESUMEN

SARS-CoV-2 infection rapidly elicits anti-Spike antibodies whose quantity in plasma gradually declines upon resolution of symptoms. This decline is part of the evolution of an immune response leading to B cell differentiation into short-lived antibody-secreting cells or resting memory B cells. At the same time, the ongoing class switch and antibody maturation processes occurring in germinal centers lead to the selection of B cell clones secreting antibodies with higher affinity for their cognate antigen, thereby improving their functional activity. To determine whether the decline in SARS-CoV-2 antibodies is paralleled with an increase in avidity of the anti-viral antibodies produced, we developed a simple assay to measure the avidity of anti-receptor binding domain (RBD) IgG elicited by SARS-CoV-2 infection. We longitudinally followed a cohort of 29 convalescent donors with blood samples collected between 6- and 32-weeks post-symptoms onset. We observed that, while the level of antibodies declines over time, the anti-RBD avidity progressively increases and correlates with the B cell class switch. Additionally, we observed that anti-RBD avidity increased similarly after SARS-CoV-2 mRNA vaccination and after SARS-CoV-2 infection. Our results suggest that anti-RBD IgG avidity determination could be a surrogate assay for antibody affinity maturation and, thus, suitable for studying humoral responses elicited by natural infection and/or vaccination.


Asunto(s)
COVID-19 , Anticuerpos Antivirales , Humanos , Inmunoglobulina G , Unión Proteica , SARS-CoV-2/genética
15.
Can J Public Health ; 113(3): 385-393, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35380364

RESUMEN

OBJECTIVES: We previously estimated the seroprevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies following the first pandemic wave at 2.23% in Québec, Canada. Following the much bigger second wave in fall 2020 and early 2021, we estimated the seroprevalence of anti-SARS-CoV-2 in Québec during the first months of 2021. METHODS: Blood samples from regular, asymptomatic (for ≥ 14 days) donors were collected between January 25, 2021 and March 11, 2021. Anti-SARS-CoV-2 seropositivity was assessed using an enzyme-linked immunosorbent assay that captures antibodies directed against the receptor binding domain of the SARS-CoV-2 spike (and hence cannot discriminate between infection- and vaccine-induced seropositivity). Seroprevalence estimates were adjusted for regional distribution, age, and sex. RESULTS: Samples from 7924 eligible donors were analyzed, including 620 (7.8%) vaccinated donors and 7046 (88.9%) unvaccinated donors (vaccination status unknown for 258 (3.3%) donors). Overall, median age was 51 years; 46.4% of donors were female. The adjusted seroprevalence was 10.5% (95% CI = 9.7-11.3) in the unvaccinated population and 14.7% (95% CI = 13.8-15.6) in the overall population. Seroprevalence gradually decreased with age and was higher among donors who self-identified as having a racial/ethnic background other than white, both in the overall and in the unvaccinated populations. CONCLUSION: The seroprevalence of SARS-CoV-2 antibodies significantly increased in Québec since spring 2020, with younger persons and ethnic minorities being disproportionately affected. When compared with the cumulative incidence rate reported by public health authorities (i.e., 3.3% as of March 11, 2021), these results suggest that a substantial proportion of infections remain undetected despite improvements in access to COVID-19 testing.


RéSUMé: OBJECTIFS: Lors d'une première étude, nous avons estimé la séroprévalence des anticorps contre le syndrome respiratoire aigu sévère coronavirus 2 (SRAS-CoV-2) après la première vague pandémique à 2,23 % au Québec, Canada. Cette seconde étude estime la séroprévalence de l'anti-SRAS-CoV-2 au Québec lors de la deuxième vague pandémique. MéTHODES: Des échantillons de donneurs de sang asymptomatiques (≥ 14 jours) ont été prélevés entre le 25 janvier et le 11 mars 2021. La séropositivité a été évaluée à l'aide d'un dosage immuno-enzymatique qui capture les anticorps dirigés contre la protéine Spike du récepteur de domaine de liaison du SARS-CoV-2 (et ne peut donc distinguer l'immunité induite par l'infection et la vaccination). La séroprévalence a été ajustée en fonction de l'âge et du sexe par région. RéSULTATS: Des échantillons de 7 924 donneurs ont été analysés, dont 620 (7,8 %) étaient vaccinés et 7 046 (88,9 %) étaient non vaccinés (statut vaccinal inconnu pour 258 (3,3 %) donneurs). Dans l'ensemble, l'âge médian était de 51 ans et 46,4 % des donneurs étaient des femmes. La séroprévalence ajustée était de 10,5 % (IC 95 % = 9,7 à 11,3) dans la population non vaccinée et de 14,7 % (IC 95 % = 13,8 à 15,6) dans la population globale. La séroprévalence diminuait progressivement avec l'âge et était plus élevée chez les donneurs d'origine ethnique autre que blanche. CONCLUSION: La séroprévalence anti-SRAS-CoV-2 a considérablement augmenté au Québec depuis le printemps 2020, les personnes plus jeunes et les minorités ethniques étant plus touchées. Comparés au taux d'incidence cumulatif signalé par la santé publique (c.-à-d. 3,3 % au 11 mars 2021), ces résultats suggèrent qu'une proportion importante d'infections reste non détectée.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Donantes de Sangre , COVID-19/epidemiología , Prueba de COVID-19 , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Quebec/epidemiología , Estudios Seroepidemiológicos
16.
mBio ; 13(3): e0057722, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35475646

RESUMEN

The heavily glycosylated HIV-1 envelope glycoprotein (Env) is the sole viral antigen present at the surface of virions and infected cells, representing the main target for antibody responses. The FDA-approved small molecule temsavir acts as an HIV-1 attachment inhibitor by preventing Env-CD4 interaction. This molecule also stabilizes Env in a prefusion "closed" conformation that is preferentially targeted by several broadly neutralizing antibodies (bNAbs). A recent study showed that an analog of temsavir (BMS-377806) affects the cleavage and addition of complex glycans on Env. In this study, we investigated the impact of temsavir on the overall glycosylation, proteolytic cleavage, cell surface expression, and antigenicity of Env. We found that temsavir impacts Env glycosylation and processing at physiological concentrations. This significantly alters the capacity of several bNAbs to recognize Env present on virions and HIV-1-infected cells. Temsavir treatment also reduces the capacity of bNAbs to eliminate HIV-1-infected cells by antibody-dependent cellular cytotoxicity (ADCC). Consequently, the impact of temsavir on Env glycosylation and antigenicity should be considered for the development of new antibody-based approaches in temsavir-treated individuals. IMPORTANCE FDA-approved fostemsavir, the prodrug for the active moiety small molecule temsavir (GSK 2616713 [formally BMS-626529]), acts as an attachment inhibitor by targeting the HIV-1 envelope (Env) and preventing CD4 interaction. Temsavir also stabilizes Env in its "closed," functional state 1 conformation, which represents an ideal target for broadly neutralizing antibodies (bNAbs). Since these antibodies recognize conformation-dependent epitopes composed of or adjacent to glycans, we evaluated the impact of temsavir treatment on overall Env glycosylation and its influence on bNAb recognition. Our results showed an alteration of Env glycosylation and cleavage by temsavir at physiological concentrations. This significantly modifies the overall antigenicity of Env and therefore reduces the capacity of bNAbs to recognize and eliminate HIV-1-infected cells by ADCC. These findings provide important information for the design of immunotherapies aimed at targeting the viral reservoir in temsavir-treated individuals.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Seropositividad para VIH , VIH-1 , Anticuerpos Neutralizantes , Anticuerpos ampliamente neutralizantes , Glicoproteínas , Anticuerpos Anti-VIH , Proteína gp120 de Envoltorio del VIH , Infecciones por VIH/tratamiento farmacológico , Humanos , Polisacáridos/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana
17.
Vaccine ; 40(26): 3633-3637, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35568588

RESUMEN

INTRODUCTION: COVID-19 vaccine efficacy has been evaluated in large clinical trials and in real-world situation. Although they have proven to be very effective in the general population, little is known about their efficacy in immunocompromised patients. HIV-infected individuals' response to vaccine may vary according to the type of vaccine and their level of immunosuppression. We evaluated immunogenicity of an mRNA anti-SARS CoV-2 vaccine in HIV-positive individuals. METHODS: HIV-positive individuals (n = 121) were recruited from HIV clinics in Montreal and stratified according to their CD4 counts. A control group of 20 health care workers naïve to SARS CoV-2 was used. The participants' Anti-RBD IgG responses were measured by ELISA at baseline and 3-4 weeks after receiving the first dose of an mRNA vaccine). RESULTS: Eleven of 121 participants had anti-COVID-19 antibodies at baseline, and a further 4 had incomplete data for the analysis. Mean anti-RBD IgG responses were similar between the HIV negative control group (n = 20) and the combined HIV+ group (n = 106) (p = 0.72). However, these responses were significantly lower in the group with <250 CD4 cells/mm3. (p < 0.0001). Increasing age was independently associated with decreased immunogenicity. CONCLUSION: HIV-positive individuals with CD4 counts over 250 cells/mm3 have an anti-RBD IgG response similar to the general population. However, HIV-positive individuals with the lowest CD4 counts (<250 cells/mm3) have a weaker response. These data would support the hypothesis that a booster dose might be needed in this subgroup of HIV-positive individuals, depending on their response to the second dose.


Asunto(s)
COVID-19 , Seropositividad para VIH , VIH-1 , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunogenicidad Vacunal , Inmunoglobulina G , Vacunas Sintéticas , Vacunas de ARNm
18.
iScience ; 25(9): 104990, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36035196

RESUMEN

Although SARS-CoV-2 mRNA vaccination has been shown to be safe and effective in the general population, immunocompromised solid organ transplant recipients (SOTRs) were reported to have impaired immune responses after one or two doses of vaccine. In this study, we examined humoral responses induced after the second and the third dose of mRNA vaccine in different SOTR (kidney, liver, lung, and heart). Compared to a cohort of SARS-CoV-2 naïve immunocompetent health care workers (HCWs), the second dose induced weak humoral responses in SOTRs, except for the liver recipients. The third dose boosted these responses but they did not reach the same level as in HCW. Interestingly, although the neutralizing activity against Delta and Omicron variants remained very low after the third dose, Fc-mediated effector functions in SOTR reached similar levels as in the HCW cohort. Whether these responses will suffice to protect SOTR from severe outcome remains to be determined.

19.
bioRxiv ; 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35233570

RESUMEN

SARS-CoV-2 infection of host cells starts by binding of the Spike glycoprotein (S) to the ACE2 receptor. The S-ACE2 interaction is a potential target for therapies against COVID-19 as demonstrated by the development of immunotherapies blocking this interaction. Here, we present the commercially available VE607, comprised of three stereoisomers, that was originally described as an inhibitor of SARS-CoV-1. We show that VE607 specifically inhibits infection of SARS-CoV-1 and SARS-CoV-2 S-expressing pseudoviral particles as well as authentic SARS-CoV-2. VE607 stabilizes the receptor binding domain (RBD) in its "up" conformation. In silico docking and mutational analysis map the VE607 binding site at the RBD-ACE2 interface. The IC 50 values are in the low micromolar range for pseudoparticles derived from SARS-CoV-2 Wuhan/D614G as well as from variants of concern (Alpha, Beta, Gamma, Delta and Omicron), suggesting that VE607 has potential for the development of drugs against SARS-CoV-2 infections.

20.
Cell Rep ; 41(6): 111624, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36351384

RESUMEN

Non-neutralizing antibodies (nnAbs) can eliminate HIV-1-infected cells via antibody-dependent cellular cytotoxicity (ADCC) and were identified as a correlate of protection in the RV144 vaccine trial. Fc-mediated effector functions of nnAbs were recently shown to alter the course of HIV-1 infection in vivo using a vpu-defective virus. Since Vpu is known to downregulate cell-surface CD4, which triggers conformational changes in the viral envelope glycoprotein (Env), we ask whether the lack of Vpu expression was linked to the observed nnAbs activity. We find that restoring Vpu expression greatly reduces nnAb recognition of infected cells, rendering them resistant to ADCC. Moreover, administration of nnAbs in humanized mice reduces viral loads only in animals infected with a vpu-defective but not with a wild-type virus. CD4-mimetics administration, known to "open" Env and expose nnAb epitopes, renders wild-type viruses sensitive to nnAbs Fc-effector functions. This work highlights the importance of Vpu-mediated evasion of humoral responses.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Animales , Humanos , Ratones , Anticuerpos Neutralizantes , Citotoxicidad Celular Dependiente de Anticuerpos , Anticuerpos Anti-VIH
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA