Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Mol Cell ; 81(20): 4176-4190.e6, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34529927

RESUMEN

Of the eight distinct polyubiquitin (polyUb) linkages that can be assembled, the roles of K48-linked polyUb (K48-polyUb) are the most established, with K48-polyUb modified proteins being targeted for degradation. MINDY1 and MINDY2 are members of the MINDY family of deubiquitinases (DUBs) that have exquisite specificity for cleaving K48-polyUb, yet we have a poor understanding of their catalytic mechanism. Here, we analyze the crystal structures of MINDY1 and MINDY2 alone and in complex with monoUb, di-, and penta-K48-polyUb, identifying 5 distinct Ub binding sites in the catalytic domain that explain how these DUBs sense both Ub chain length and linkage type to cleave K48-polyUb chains. The activity of MINDY1/2 is inhibited by the Cys-loop, and we find that substrate interaction relieves autoinhibition to activate these DUBs. We also find that MINDY1/2 use a non-canonical catalytic triad composed of Cys-His-Thr. Our findings highlight multiple layers of regulation modulating DUB activity in MINDY1 and MINDY2.


Asunto(s)
Enzimas Desubicuitinizantes/metabolismo , Poliubiquitina/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía , Enzimas Desubicuitinizantes/genética , Activación Enzimática , Humanos , Cinética , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Dispersión del Ángulo Pequeño , Relación Estructura-Actividad , Ubiquitina Tiolesterasa/genética , Ubiquitinación
2.
Biophys J ; 122(15): 3078-3088, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37340636

RESUMEN

A critical quality attribute for liquid formulations is the absence of visible particles. Such particles may form upon polysorbate hydrolysis resulting in release of free fatty acids into solution followed by precipitation. Strategies to avoid this effect are of major interest for the pharmaceutical industry. In this context, we investigated the structural organization of polysorbate micelles alone and upon addition of the fatty acid myristic acid (MA) by small-angle x-ray scattering. Two complementary approaches using a model of polydisperse core-shell ellipsoidal micelles and an ensemble of quasiatomistic micelle structures gave consistent results well describing the experimental data. The small-angle x-ray scattering data reveal polydisperse mixtures of ellipsoidal micelles containing about 22-35 molecules per micelle. The addition of MA at concentrations up to 100 µg/mL reveals only marginal effects on the scattering data. At the same time, addition of high amounts of MA (>500 µg/mL) increases the average sizes of the micelles indicating that MA penetrates into the surfactant micelles. These results together with molecular modeling shed light on the polysorbate contribution to fatty acid solubilization preventing or delaying fatty acid particle formation.


Asunto(s)
Ácidos Grasos no Esterificados , Micelas , Polisorbatos , Dispersión del Ángulo Pequeño , Polisorbatos/química , Ácidos Grasos no Esterificados/química , Ácido Mirístico/química , Composición de Medicamentos
4.
IUBMB Life ; 65(4): 310-22, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23457054

RESUMEN

GTP cyclohydrolases generate the first committed intermediates for the biosynthesis of certain vitamins/cofactors (folic acid, riboflavin, deazaflavin, and tetrahydrobiopterin), deazapurine antibiotics, some t-RNA bases (queuosine, archaeosine), and the phytotoxin, toxoflavin. They depend on divalent cations for hydrolytic opening of the imidazole ring of the substrate, guanosine triphosphate (GTP). Surprisingly, the ring opening reaction is not the rate-limiting step for GTP cyclohydrolases I and II whose mechanism have been studied in some detail. GTP cyclohydrolase I, Ib, and II are potential targets for novel anti-infectives. Genetic factors modulating the activity of human GTP cyclohydrolase are highly pleiotropic, since the signal transponders whose biosyntheses require their participation (nitric oxide, catecholamines) impact a very wide range of physiological phenomena. Recent studies suggest that human GTP cyclohydrolase may become an oncology target.


Asunto(s)
Ácido Fólico/química , GTP Ciclohidrolasa/química , Guanosina Trifosfato/química , Riboflavina/química , Antibacterianos/química , Biopterinas/análogos & derivados , Biopterinas/química , Cationes Bivalentes/química , Escherichia coli/química , Ácido Fólico/biosíntesis , Humanos , Cinética , Riboflavina/biosíntesis
5.
Proc Natl Acad Sci U S A ; 107(3): 1077-81, 2010 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-20080550

RESUMEN

Isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) represent the two central intermediates in the biosynthesis of isoprenoids. The recently discovered deoxyxylulose 5-phosphate pathway generates a mixture of IPP and DMAPP in its final step by reductive dehydroxylation of 1-hydroxy-2-methyl-2-butenyl 4-diphosphate. This conversion is catalyzed by IspH protein comprising a central iron-sulfur cluster as electron transfer cofactor in the active site. The five crystal structures of IspH in complex with substrate, converted substrate, products and PP(i) reported in this article provide unique insights into the mechanism of this enzyme. While IspH protein crystallizes with substrate bound to a [4Fe-4S] cluster, crystals of IspH in complex with IPP, DMAPP or inorganic pyrophosphate feature [3Fe-4S] clusters. The IspH:substrate complex reveals a hairpin conformation of the ligand with the C(1) hydroxyl group coordinated to the unique site in a [4Fe-4S] cluster of aconitase type. The resulting alkoxide complex is coupled to a hydrogen-bonding network, which serves as proton reservoir via a Thr167 proton relay. Prolonged x-ray irradiation leads to cleavage of the C(1)-O bond (initiated by reducing photo electrons). The data suggest a reaction mechanism involving a combination of Lewis-acid activation and proton coupled electron transfer. The resulting allyl radical intermediate can acquire a second electron via the iron-sulfur cluster. The reaction may be terminated by the transfer of a proton from the beta-phosphate of the substrate to C(1) (affording DMAPP) or C(3) (affording IPP).


Asunto(s)
Proteínas de Escherichia coli/química , Oxidorreductasas/química , Cristalografía por Rayos X , Modelos Moleculares , Sondas Moleculares , Conformación Proteica
6.
Cell Mol Life Sci ; 68(23): 3797-814, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21744068

RESUMEN

The non-mevalonate pathway of isoprenoid (terpenoid) biosynthesis is essential in many eubacteria including the major human pathogen, Mycobacterium tuberculosis, in apicomplexan protozoa including the Plasmodium spp. causing malaria, and in the plastids of plants. The metabolic route is absent in humans and is therefore qualified as a promising target for new anti-infective drugs and herbicides. Biochemical and structural knowledge about all enzymes involved in the pathway established the basis for discovery and development of inhibitors by high-throughput screening of compound libraries and/or structure-based rational design.


Asunto(s)
Terpenos/metabolismo , Animales , Antiinfecciosos/farmacología , Vías Biosintéticas/efectos de los fármacos , Vías Biosintéticas/genética , Genómica , Herbicidas/farmacología , Humanos , Ácido Mevalónico , Modelos Moleculares , Terpenos/química
7.
Angew Chem Int Ed Engl ; 49(47): 8802-9, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20922726

RESUMEN

The biosynthesis of natural products is a treasure trove of unusual reaction mechanisms. This Minireview summarizes recent work on the structure and mechanism of IspH protein, which catalyzes the reductive dehydroxylation of an allyl alcohol in a biosynthetic pathway leading to isoprenoid precursors.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Oxidorreductasas/metabolismo , Propanoles/química , Terpenos/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Oxidación-Reducción , Oxidorreductasas/química , Estructura Terciaria de Proteína
8.
J Mol Biol ; 432(9): 3078-3092, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32035901

RESUMEN

Small-angle X-ray scattering (SAXS) offers a way to examine the overall shape and oligomerization state of biological macromolecules under quasi native conditions in solution. In the past decades, SAXS has become a standard tool for structure biologists due to the availability of high brilliance X-ray sources and the development of data analysis/interpretation methods. Sample handling robots and software pipelines have significantly reduced the time necessary to conduct SAXS experiments. Presently, most synchrotrons feature beamlines dedicated to biological SAXS, and the SAXS-derived models are deposited into dedicated and accessible databases. The size of macromolecules that may be analyzed ranges from small peptides or snippets of nucleic acids to gigadalton large complexes or even entire viruses. Compared to other structural methods, sample preparation is straightforward, and the risk of inducing preparation artefacts is minimal. Very importantly, SAXS is a method of choice to study flexible systems like unfolded or disordered proteins, providing the structural ensembles compatible with the data. Although it may be utilized stand-alone, SAXS profits a lot from available experimental or predicted high-resolution data and information from complementary biophysical methods. Here, we show the basic principles of SAXS and review latest developments in the fields of hybrid modeling and flexible systems.


Asunto(s)
Sustancias Macromoleculares/química , Difracción de Rayos X/métodos , Biología Computacional/métodos , Simulación por Computador , Modelos Moleculares , Conformación Molecular , Dispersión del Ángulo Pequeño , Programas Informáticos
9.
Structure ; 28(3): 348-354.e3, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-31899087

RESUMEN

Recent structures of full-length ATP-binding cassette (ABC) transporter MsbA in different states indicate large conformational changes during the reaction cycle that involve transient dimerization of its nucleotide-binding domains (NBDs). However, a detailed molecular understanding of the structural changes and associated kinetics of MsbA upon ATP binding and hydrolysis is still missing. Here, we employed time-resolved small-angle X-ray scattering, initiated by stopped-flow mixing, to investigate the kinetics and accompanying structural changes of NBD dimerization (upon ATP binding) and subsequent dissociation (upon ATP hydrolysis) in the context of isolated NBDs as well as full-length MsbA in lipid nanodiscs. Our data allowed us to structurally characterize the major states involved in the process and determine time constants for NBD dimerization and dissociation. In the full-length protein, these structural transitions occur on much faster time scales, indicating close-proximity effects and structural coupling of the transmembrane domains with the NBDs.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Adenosina Trifosfato/metabolismo , Hidrólisis , Multimerización de Proteína , Dispersión del Ángulo Pequeño , Difracción de Rayos X
10.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 9): 586-592, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31475925

RESUMEN

A putative open reading frame encoding GTP cyclohydrolase I from Listeria monocytogenes was expressed in a recombinant Escherichia coli strain. The recombinant protein was purified and was confirmed to convert GTP to dihydroneopterin triphosphate (Km = 53 µM; vmax = 180 nmol mg-1 min-1). The protein was crystallized from 1.3 M sodium citrate pH 7.3 and the crystal structure was solved at a resolution of 2.4 Š(Rfree = 0.226) by molecular replacement using human GTP cyclohydrolase I as a template. The protein is a D5-symmetric decamer with ten topologically equivalent active sites. Screening a small library of about 9000 compounds afforded several inhibitors with IC50 values in the low-micromolar range. Several inhibitors had significant selectivity with regard to human GTP cyclohydrolase I. Hence, GTP cyclohydrolase I may be a potential target for novel drugs directed at microbial infections, including listeriosis, a rare disease with high mortality.


Asunto(s)
Proteínas Bacterianas/química , GTP Ciclohidrolasa/química , Listeria monocytogenes/enzimología , Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Cristalografía por Rayos X , Escherichia coli/metabolismo , GTP Ciclohidrolasa/antagonistas & inhibidores , GTP Ciclohidrolasa/genética , GTP Ciclohidrolasa/aislamiento & purificación , Listeria monocytogenes/genética , Neopterin/análogos & derivados , Neopterin/metabolismo , Conformación Proteica , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
11.
Eur J Med Chem ; 181: 111555, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31382119

RESUMEN

Thia analogs of fosmidomycin are potent inhibitors of the non-mevalonate isoprenoid biosynthesis enzyme 1-deoxy-d-xylulose 5-phosphate reductoisomerase (IspC, Dxr) of Plasmodium falciparum. Several new thioethers displayed antiplasmodial in vitro activity in the low nanomolar range, without apparent cytotoxic effects in HeLa cells. The (S)-(+)-enantiomer of a typical representative selectively inhibited IspC and the growth of P. falciparum in continuous culture. The inhibitor was stable at pH 7.6 and room temperature, and no racemization was observed under these conditions during a period of up to two days. Oxidation of selected thioethers to sulfones reduced antiplasmodial activity and the inhibitory activity against Escherichia coli, Mycobacterium tuberculosis and P. falciparum IspC orthologs.


Asunto(s)
Antibacterianos/farmacología , Antiprotozoarios/farmacología , Escherichia coli/efectos de los fármacos , Fosfomicina/análogos & derivados , Mycobacterium tuberculosis/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Células CACO-2 , Relación Dosis-Respuesta a Droga , Escherichia coli/crecimiento & desarrollo , Fosfomicina/síntesis química , Fosfomicina/química , Fosfomicina/farmacología , Células HeLa , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Mycobacterium tuberculosis/crecimiento & desarrollo , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/crecimiento & desarrollo , Relación Estructura-Actividad
12.
Chem Sci ; 9(27): 5976-5986, 2018 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-30079212

RESUMEN

Characterizing the mode of action of non-covalent inhibitors in multisubunit enzymes often presents a great challenge. Most of the conventionally used methods are based on ensemble measurements of protein-ligand binding in bulk solution. They often fail to accurately describe multiple binding processes occurring in such systems. Native electrospray ionization mass spectrometry (ESI-MS) of intact protein complexes is a direct, label-free approach that can render the entire distribution of ligand-bound states in multimeric protein complexes. Here we apply native ESI-MS to comprehensively characterize the isoprenoid biosynthesis enzyme IspF from Arabidopsis thaliana, an example of a homomeric protein complex with multiple binding sites for several types of ligands, including a metal cofactor and a synthetic inhibitor. While standard biophysical techniques failed to reveal the mode of action of recently discovered aryl-sulfonamide-based inhibitors of AtIspF, direct native ESI-MS titrations of the protein with the ligands and ligand competition assays allowed us to accurately capture the solution-phase protein-ligand binding equilibria in full complexity and detail. Based on these combined with computational modeling, we propose a mechanism of AtIspF inhibition by aryl bis-sulfonamides that involves both the competition with the substrate for the ligand-binding pocket and the extraction of Zn2+ from the enzyme active site. This inhibition mode is therefore mixed competitive and non-competitive, the latter exerting a key inhibitory effect on the enzyme activity. The results of our study deliver a profound insight into the mechanisms of AtIspF action and inhibition, open new perspectives for designing inhibitors of this important drug target, and demonstrate the applicability and value of the native ESI-MS approach for deep analysis of complex biomolecular binding equilibria.

13.
Isotopes Environ Health Stud ; 51(1): 11-23, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25622148

RESUMEN

The positional distributions of stable isotopes in metabolites provide specific fingerprints of the pathways and fluxes that have occurred in the organisms under study. In particular, modern nuclear magnetic resonance (NMR) spectroscopy enables the detailed assignment of isotope patterns in natural products, for example, in metabolites obtained from labelling experiments using (13)C-enriched precursors, such as glucose, acetate or CO2. In this study, the transient (13)C-isotopologue composition of blood glucose from an adult human volunteer after intravenous supply of [U-(13)C6]glucose was determined by high-resolution (13)C NMR spectroscopy. The non-linear progression curves displaying the relative amounts of eight (13)C-glucose isotopologues reflected the contributions of glucose metabolism by glycolytic cycling, the pentose phosphate pathway and anaplerotic reactions involving the citric acid cycle. The pilot study suggests that the experimental setting can be useful in analysing under non-invasive conditions the impact of physiological and pharmacological constraints on glucose turnover in humans.


Asunto(s)
Glucemia/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Isótopos de Carbono/análisis , Ciclo del Ácido Cítrico , Humanos , Masculino , Vía de Pentosa Fosfato , Proyectos Piloto
14.
J Med Chem ; 58(4): 2025-35, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25633870

RESUMEN

Fosmidomycin inhibits IspC (Dxr, 1-deoxy-d-xylulose 5-phosphate reductoisomerase), a key enzyme in nonmevalonate isoprenoid biosynthesis that is essential in Plasmodium falciparum. The drug has been used successfully to treat malaria patients in clinical studies, thus validating IspC as an antimalarial target. However, improvement of the drug's pharmacodynamics and pharmacokinetics is desirable. Here, we show that the conversion of the phosphonate moiety into acyloxymethyl and alkoxycarbonyloxymethyl groups can increase the in vitro activity against asexual blood stages of P. falciparum by more than 1 order of magnitude. We also synthesized double prodrugs by additional esterification of the hydroxamate moiety. Prodrugs with modified hydroxamate moieties are subject to bioactivation in vitro. All prodrugs demonstrated improved antiplasmodial in vitro activity. Selected prodrugs and parent compounds were also tested for their cytotoxicity toward HeLa cells and in vivo in a Plasmodium berghei malaria model as well as in the SCID mouse P. falciparum model.


Asunto(s)
Antimaláricos/farmacología , Fosfomicina/análogos & derivados , Malaria/tratamiento farmacológico , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Profármacos/farmacología , Animales , Antimaláricos/síntesis química , Antimaláricos/química , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Fosfomicina/síntesis química , Fosfomicina/química , Fosfomicina/farmacología , Células HeLa , Humanos , Ratones , Ratones SCID , Estructura Molecular , Profármacos/síntesis química , Profármacos/química , Relación Estructura-Actividad
15.
Chem Biodivers ; 1(9): 1367-76, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17191914

RESUMEN

To investigate the unknown stereochemical course of the reaction catalyzed by the type-II isomerase, which interconverts isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), a sample of [1,2-(13)C2]-IPP stereospecifically labelled with 2H at C2 was prepared by incubating a D2O solution of (E)-4-hydroxy-3-methyl[1,2-(13)C2]but-2-enyl diphosphate with a recombinant IspH protein of Escherichia coli in the presence of NADH as a reducing agent and flavodoxin as well as flavodoxin reductase as auxiliary proteins. As monitored by 13C-NMR spectroscopy, treatment of the deuterated IPP with either type-I or type-II IPP isomerase resulted in the formation of DMAPP molecules retaining all the 2H label of the starting material. From the known stereochemical course of the type-I isomerase-catalyzed reaction, one has to conclude that the label introduced from D2O in the course of the IspH reaction resides specifically in the H(Si)-C2 position of IPP and that the two isomerases mobilize specifically the same H(Re)-C2 ligand of their common IPP substrate. The outcome of an additional experiment, in which unlabelled IPP was incubated in D2O with the type-II enzyme, demonstrates that the two isomerases also share the same preference in selecting for their reaction the (E)-methyl group of DMAPP.


Asunto(s)
Hemiterpenos/análisis , Hemiterpenos/química , Compuestos Organofosforados/análisis , Compuestos Organofosforados/química , Bacillus subtilis/aislamiento & purificación , Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/análisis , Proteínas de Escherichia coli/química , Conformación Molecular
17.
Methods Mol Biol ; 1146: 15-40, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24764086

RESUMEN

Riboflavin is biosynthesized from GTP and ribulose 5-phosphate. Whereas the early reactions conducing to 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione 5'-phosphate show significant taxonomic variation, the subsequent reaction steps are universal in all taxonomic kingdoms. With the exception of a hitherto elusive phosphatase, all enzymes of the pathway have been characterized in some detail at the structural and mechanistic level. Some of the pathway enzymes (GTP cycloyhdrolase II, 3,4-dihydroxy-2-butanone 4-phosphate synthase, riboflavin synthase) have exceptionally complex reaction mechanisms. The commercial production of the vitamin is now entirely based on highly productive fermentation processes. Due to their absence in animals, the pathway enzymes are potential targets for the development of novel anti-infective drugs.


Asunto(s)
Vías Biosintéticas , Riboflavina/biosíntesis , Animales , Antiinfecciosos/farmacología , Vías Biosintéticas/efectos de los fármacos , Vacuna contra la Brucelosis , Fermentación , Mononucleótido de Flavina/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Regulación de la Expresión Génica , Humanos , Complejos Multienzimáticos/metabolismo , Riboflavina/análogos & derivados , Riboflavina/metabolismo , Riboflavina Sintasa
18.
J Agric Food Chem ; 62(52): 12487-90, 2014 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-25483006

RESUMEN

Cattle husbandry is a major contributor to atmospheric methane, which is considered as an important greenhouse gas. Moreover, the generation of methane in the intestine of domestic ruminants by methanogenic bacteria is a drag on feed efficacy. Studies on methanogenesis have typically implied model organisms that are, however, not relevant in the ruminant gut. This paper shows that methyl-CoM reductase catalyzing the final step of methanogenesis in Methanobrevibacter ruminantium, a major participant in methane production by cattle, is inhibited by 2-bromoethanesulfonate, a compound often used as a model in animal agriculture, with an apparent IC50 of 0.4 ± 0.04 µM.


Asunto(s)
Ácidos Alcanesulfónicos/química , Proteínas Arqueales/antagonistas & inhibidores , Methanobrevibacter/enzimología , Oxidorreductasas/antagonistas & inhibidores , Animales , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Bovinos , Cinética , Metano/biosíntesis , Methanobrevibacter/química , Methanobrevibacter/genética , Methanobrevibacter/metabolismo , Oxidorreductasas/química , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Rumen/microbiología
19.
J Med Chem ; 57(21): 8827-38, 2014 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-25254502

RESUMEN

1-Deoxy-d-xylulose 5-phosphate reductoisomerase of Plasmodium falciparum (PfIspC, PfDxr), believed to be the rate-limiting enzyme of the nonmevalonate pathway of isoprenoid biosynthesis (MEP pathway), is a clinically validated antimalarial target. The enzyme is efficiently inhibited by the natural product fosmidomycin. To gain new insights into the structure activity relationships of reverse fosmidomycin analogs, several reverse analogs of fosmidomycin were synthesized and biologically evaluated. The 4-methoxyphenyl substituted derivative 2c showed potent inhibition of PfIspC as well as of P. falciparum growth and was more than one order of magnitude more active than fosmidomycin. The binding modes of three new derivatives in complex with PfIspC, reduced nicotinamide adenine dinucleotide phosphate, and Mg(2+) were determined by X-ray structure analysis. Notably, PfIspC selectively binds the S-enantiomers of the study compounds.


Asunto(s)
Isomerasas Aldosa-Cetosa/antagonistas & inhibidores , Fosfomicina/análogos & derivados , Isomerasas Aldosa-Cetosa/metabolismo , Dominio Catalítico , Cristalización , Fosfomicina/síntesis química , Fosfomicina/farmacología , NADP/metabolismo , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Relación Estructura-Actividad
20.
J Med Chem ; 56(20): 8151-62, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24032981

RESUMEN

The emergence and spread of multidrug-resistant pathogens are widely believed to endanger human health. New drug targets and lead compounds exempt from cross-resistance with existing drugs are urgently needed. We report on the synthesis and properties of "reverse" thia analogs of fosmidomycin, which inhibit the first committed enzyme of a metabolic pathway that is essential for the causative agents of tuberculosis and malaria but is absent in the human host. Notably, IspC displays a high level of enantioselectivity for an α-substituted fosmidomycin derivative.


Asunto(s)
Isomerasas Aldosa-Cetosa/antagonistas & inhibidores , Antiinfecciosos/farmacología , Descubrimiento de Drogas/métodos , Fosfomicina/análogos & derivados , Isomerasas Aldosa-Cetosa/genética , Isomerasas Aldosa-Cetosa/metabolismo , Secuencia de Aminoácidos , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Escherichia coli/genética , Fosfomicina/síntesis química , Fosfomicina/química , Fosfomicina/farmacología , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Homología de Secuencia de Aminoácido , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA