Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 157(2): 369-381, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24703711

RESUMEN

Chromosomal rearrangements without gene fusions have been implicated in leukemogenesis by causing deregulation of proto-oncogenes via relocation of cryptic regulatory DNA elements. AML with inv(3)/t(3;3) is associated with aberrant expression of the stem-cell regulator EVI1. Applying functional genomics and genome-engineering, we demonstrate that both 3q rearrangements reposition a distal GATA2 enhancer to ectopically activate EVI1 and simultaneously confer GATA2 functional haploinsufficiency, previously identified as the cause of sporadic familial AML/MDS and MonoMac/Emberger syndromes. Genomic excision of the ectopic enhancer restored EVI1 silencing and led to growth inhibition and differentiation of AML cells, which could be replicated by pharmacologic BET inhibition. Our data show that structural rearrangements involving the chromosomal repositioning of a single enhancer can cause deregulation of two unrelated distal genes, with cancer as the outcome.


Asunto(s)
Cromosomas Humanos Par 3 , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos , Factor de Transcripción GATA2/genética , Regulación Neoplásica de la Expresión Génica , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicos/genética , Proto-Oncogenes/genética , Factores de Transcripción/genética , Línea Celular Tumoral , Inversión Cromosómica , Humanos , Proteína del Locus del Complejo MDS1 y EV11 , Regiones Promotoras Genéticas , Activación Transcripcional , Translocación Genética
2.
Haematologica ; 108(9): 2316-2330, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36475518

RESUMEN

Mono-allelic germline disruptions of the transcription factor GATA2 result in a propensity for developing myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), affecting more than 85% of carriers. How a partial loss of GATA2 functionality enables leukemic transformation years later is unclear. This question has remained unsolved mainly due to the lack of informative models, as Gata2 heterozygote mice do not develop hematologic malignancies. Here we show that two different germline Gata2 mutations (TgErg/Gata2het and TgErg/Gata2L359V) accelerate AML in mice expressing the human hematopoietic stem cell regulator ERG. Analysis of Erg/Gata2het fetal liver and bone marrow-derived hematopoietic cells revealed a distinct pre-leukemic phenotype. This was characterized by enhanced transition from stem to progenitor state, increased proliferation, and a striking mitochondrial phenotype, consisting of highly expressed oxidative-phosphorylation-related gene sets, elevated oxygen consumption rates, and notably, markedly distorted mitochondrial morphology. Importantly, the same mitochondrial gene-expression signature was observed in human AML harboring GATA2 aberrations. Similar to the observations in mice, non-leukemic bone marrows from children with germline GATA2 mutation demonstrated marked mitochondrial abnormalities. Thus, we observed the tumor suppressive effects of GATA2 in two germline Gata2 genetic mouse models. As oncogenic mutations often accumulate with age, GATA2 deficiency-mediated priming of hematopoietic cells for oncogenic transformation may explain the earlier occurrence of MDS/AML in patients with GATA2 germline mutation. The mitochondrial phenotype is a potential therapeutic opportunity for the prevention of leukemic transformation in these patients.


Asunto(s)
Deficiencia GATA2 , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Niño , Humanos , Ratones , Animales , Deficiencia GATA2/genética , Síndromes Mielodisplásicos/patología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Médula Ósea/patología , Células Madre Hematopoyéticas/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo
3.
BMC Cancer ; 22(1): 1040, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36195836

RESUMEN

BACKGROUND: Overexpression of the EVI1 (ecotropic viral integration site 1) oncogene has recently been implicated as a prognostic factor in breast cancer (BC), particularly in triple-negative BC (TNBC). In this study we aimed to investigate frequency and clinical relevance of EVI1 expression in newly diagnosed BC treated with neoadjuvant chemotherapy. METHODS: EVI1 expression was determined by immunohistochemistry using H-score as a cumulative measurement of protein expression in pretherapeutic biopsies of BC patients treated with anthracycline/taxane based neoadjuvant chemotherapy within the GeparTrio trial. EVI1 was analyzed as a continuous variable and dichotomized into low or high based on median expression. Endpoints were pathological complete response (pCR), disease-free survival (DFS) and overall survival (OS). RESULTS: Of the 993 tumors analyzed, 882 had available subtype information: 50.8% were HR + /HER2-, 15% HR + /HER2 + , 9.8% HR-/HER2 + , and 24.5% TNBC. Median EVI1 H-score was 112.16 (range 0.5-291.4). High EVI1 expression was significantly associated with smaller tumor size (p = 0.002) but not with BC subtype. Elevated EVI1 levels were not significantly associated with therapy response and survival in the entire cohort or within BC subtypes. However, TNBC patients with high EVI1 showed a trend towards increased pCR rates compared to low group (37.7% vs 27.5%, p = 0.114; odds ratio 1.60 (95%CI 0.90-2.85, p = 0.110) and numerically better DFS (HR = 0.77 [95%CI 0.48-1.23], log-rank p = 0.271) and OS (HR = 0.76 [95% 0.44-1.31], log-rank p = 0.314) without reaching statistical significance. CONCLUSION: EVI1 was not associated with response to neoadjuvant therapy or patient survival in the overall cohort. Further analyses are needed to verify our findings especially in the pathological work-up of early-stage HER2-negative BC patients. TRIAL REGISTRATION: NCT00544765.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Antraciclinas/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Quimioterapia Adyuvante , Ensayos Clínicos como Asunto , Supervivencia sin Enfermedad , Femenino , Humanos , Terapia Neoadyuvante , Pronóstico , Receptor ErbB-2/metabolismo , Taxoides , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética
4.
Nature ; 530(7588): 57-62, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26814967

RESUMEN

Medulloblastoma is a highly malignant paediatric brain tumour, often inflicting devastating consequences on the developing child. Genomic studies have revealed four distinct molecular subgroups with divergent biology and clinical behaviour. An understanding of the regulatory circuitry governing the transcriptional landscapes of medulloblastoma subgroups, and how this relates to their respective developmental origins, is lacking. Here, using H3K27ac and BRD4 chromatin immunoprecipitation followed by sequencing (ChIP-seq) coupled with tissue-matched DNA methylation and transcriptome data, we describe the active cis-regulatory landscape across 28 primary medulloblastoma specimens. Analysis of differentially regulated enhancers and super-enhancers reinforced inter-subgroup heterogeneity and revealed novel, clinically relevant insights into medulloblastoma biology. Computational reconstruction of core regulatory circuitry identified a master set of transcription factors, validated by ChIP-seq, that is responsible for subgroup divergence, and implicates candidate cells of origin for Group 4. Our integrated analysis of enhancer elements in a large series of primary tumour samples reveals insights into cis-regulatory architecture, unrecognized dependencies, and cellular origins.


Asunto(s)
Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Elementos de Facilitación Genéticos/genética , Regulación Neoplásica de la Expresión Génica/genética , Meduloblastoma/clasificación , Meduloblastoma/patología , Factores de Transcripción/metabolismo , Animales , Neoplasias Cerebelosas/clasificación , Femenino , Redes Reguladoras de Genes/genética , Genes Relacionados con las Neoplasias/genética , Genes Reporteros/genética , Humanos , Masculino , Meduloblastoma/genética , Ratones , Reproducibilidad de los Resultados , Pez Cebra/genética
5.
Blood ; 132(25): 2643-2655, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30315124

RESUMEN

Epigenetic control of gene expression occurs within discrete spatial chromosomal units called topologically associating domains (TADs), but the exact spatial requirements of most genes are unknown; this is of particular interest for genes involved in cancer. We therefore applied high-resolution chromosomal conformation capture sequencing to map the three-dimensional (3D) organization of the human locus encoding the key myeloid transcription factor PU.1 in healthy monocytes and acute myeloid leukemia (AML) cells. We identified a dynamic ∼75-kb unit (SubTAD) as the genomic region in which spatial interactions between PU.1 gene regulatory elements occur during myeloid differentiation and are interrupted in AML. Within this SubTAD, proper initiation of the spatial chromosomal interactions requires PU.1 autoregulation and recruitment of the chromatin-adaptor protein LDB1 (LIM domain-binding protein 1). However, once these spatial interactions have occurred, LDB1 stabilizes them independently of PU.1 autoregulation. Thus, our data support that PU.1 autoregulates its expression in a "hit-and-run" manner by initiating stable chromosomal loops that result in a transcriptionally active chromatin architecture.


Asunto(s)
Epigénesis Genética , Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda , Proteínas de Neoplasias , Proteínas Proto-Oncogénicas , Transactivadores , Transcripción Genética , Cromatina/genética , Cromatina/metabolismo , Sitios Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
6.
Blood ; 127(24): 2991-3003, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-26966090

RESUMEN

Neutrophilic differentiation is dependent on CCAAT enhancer-binding protein α (C/EBPα), a transcription factor expressed in multiple organs including the bone marrow. Using functional genomic technologies in combination with clustered regularly-interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 genome editing and in vivo mouse modeling, we show that CEBPA is located in a 170-kb topological-associated domain that contains 14 potential enhancers. Of these, 1 enhancer located +42 kb from CEBPA is active and engages with the CEBPA promoter in myeloid cells only. Germ line deletion of the homologous enhancer in mice in vivo reduces Cebpa levels exclusively in hematopoietic stem cells (HSCs) and myeloid-primed progenitor cells leading to severe defects in the granulocytic lineage, without affecting any other Cebpa-expressing organ studied. The enhancer-deleted progenitor cells lose their myeloid transcription program and are blocked in differentiation. Deletion of the enhancer also causes loss of HSC maintenance. We conclude that a single +42-kb enhancer is essential for CEBPA expression in myeloid cells only.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Diferenciación Celular/genética , Linaje de la Célula/genética , Elementos de Facilitación Genéticos , Células Mieloides/fisiología , Mielopoyesis/genética , Neutrófilos/fisiología , Animales , Proteína alfa Potenciadora de Unión a CCAAT/genética , Línea Celular Tumoral , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Células HL-60 , Células HeLa , Células Hep G2 , Humanos , Células Jurkat , Células K562 , Ratones , Ratones Noqueados , Células U937
7.
Int J Cancer ; 141(5): 877-886, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28597939

RESUMEN

Precision oncology implies the ability to predict which patients will likely respond to specific cancer therapies based on increasingly accurate, high-resolution molecular diagnostics as well as the functional and mechanistic understanding of individual tumors. While molecular stratification of patients can be achieved through different means, a promising approach is next-generation sequencing of tumor DNA and RNA, which can reveal genomic alterations that have immediate clinical implications. Furthermore, certain genetic alterations are shared across multiple histologic entities, raising the fundamental question of whether tumors should be treated by molecular profile and not tissue of origin. We here describe MASTER (Molecularly Aided Stratification for Tumor Eradication Research), a clinically applicable platform for prospective, biology-driven stratification of younger adults with advanced-stage cancer across all histologies and patients with rare tumors. We illustrate how a standardized workflow for selection and consenting of patients, sample processing, whole-exome/genome and RNA sequencing, bioinformatic analysis, rigorous validation of potentially actionable findings, and data evaluation by a dedicated molecular tumor board enables categorization of patients into different intervention baskets and formulation of evidence-based recommendations for clinical management. Critical next steps will be to increase the number of patients that can be offered comprehensive molecular analysis through collaborations and partnering, to explore ways in which additional technologies can aid in patient stratification and individualization of treatment, to stimulate clinically guided exploratory research projects, and to gradually move away from assessing the therapeutic activity of targeted interventions on a case-by-case basis toward controlled clinical trials of genomics-guided treatments.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Oncología Médica/métodos , Neoplasias/genética , Medicina de Precisión/métodos , Humanos , Neoplasias/clasificación
8.
Blood ; 125(1): 133-9, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25381062

RESUMEN

Myeloid malignancies bearing chromosomal inv(3)/t(3;3) abnormalities are among the most therapy-resistant leukemias. Deregulated expression of EVI1 is the molecular hallmark of this disease; however, the genome-wide spectrum of cooperating mutations in this disease subset has not been systematically elucidated. Here, we show that 98% of inv(3)/t(3;3) myeloid malignancies harbor mutations in genes activating RAS/receptor tyrosine kinase (RTK) signaling pathways. In addition, hemizygous mutations in GATA2, as well as heterozygous alterations in RUNX1, SF3B1, and genes encoding epigenetic modifiers, frequently co-occur with the inv(3)/t(3;3) aberration. Notably, neither mutational patterns nor gene expression profiles differ across inv(3)/t(3;3) acute myeloid leukemia, chronic myeloid leukemia, and myelodysplastic syndrome cases, suggesting recognition of inv(3)/t(3;3) myeloid malignancies as a single disease entity irrespective of blast count. The high incidence of activating RAS/RTK signaling mutations may provide a target for a rational treatment strategy in this high-risk patient group.


Asunto(s)
Inversión Cromosómica , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicos/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Translocación Genética , Proteínas ras/metabolismo , Alelos , Bandeo Cromosómico , Cromosomas Humanos Par 3 , Análisis Mutacional de ADN , Epigénesis Genética , Exoma , Perfilación de la Expresión Génica , Humanos , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN
9.
Genes Chromosomes Cancer ; 55(8): 626-39, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27106868

RESUMEN

Inhibition of the PD-L1 (CD274) - PD-1 axis has emerged as a powerful cancer therapy that prevents evasion of tumor cells from the immune system. While immunohistochemical detection of PD-L1 was introduced as a predictive biomarker with variable power, much less is known about copy number alterations (CNA) affecting PD-L1 and their associations with expression levels, mutational load, and survival. To gain insight, we employed The Cancer Genome Atlas (TCGA) datasets to comprehensively analyze 22 major cancer types for PD-L1 CNAs. We observed a diverse landscape of PD-L1 CNAs, which affected focal regions, chromosome 9p or the entire chromosome 9. Deletions of PD-L1 were more frequent than gains (31% vs. 12%) with deletions being most prevalent in melanoma and non-small cell lung cancer. Copy number gains most frequently occurred in ovarian cancer, head and neck cancer, bladder cancer, cervical and endocervical cancer, sarcomas, and colorectal cancers. Fine-mapping of the genetic architecture revealed specific recurrently amplified and deleted core regions across cancers with putative biological and clinical consequences. PD-L1 CNAs correlated significantly with PD-L1 mRNA expression changes in many cancer types, and tumors with PD-L1 gains harbored significantly higher mutational load compared to non-amplified cases (median: 78 non-synonymous mutations vs. 40, P = 7.1e-69). Moreover, we observed that, in general, both PD-L1 amplifications and deletions were associated with dismal prognosis. In conclusion, PD-L1 CNAs, in particular PD-L1 copy number gains, represent frequent genetic alterations across many cancers, which influence PD-L1 expression levels, are associated with higher mutational loads, and may be exploitable as predictive biomarker for immunotherapy regimens. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Antígeno B7-H1/genética , Biomarcadores de Tumor/genética , Variaciones en el Número de Copia de ADN/genética , Neoplasias/genética , Antígeno B7-H1/biosíntesis , Biomarcadores de Tumor/biosíntesis , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunoterapia , Mutación , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia , Receptor de Muerte Celular Programada 1/genética
11.
Am J Med Genet A ; 170A(2): 504-509, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26554871

RESUMEN

Interstitial deletions encompassing the 3q26.2 region are rare. Only one case-report was published this far describing a patient with an interstitial deletion of 3q26.2 (involving the MDS1-EVI1 complex (MECOM)) and congenital thrombocytopenia. In this report we describe a case of a neonate with congenital thrombocytopenia and a constitutional 4.52 Mb deletion of 3q26.2q26.31 including TERC and the first 2 exons of MECOM, involving MDS1 but not EVI1. The deletion was demonstrated by array-CGH on lymphocytes. Our report confirms that congenital thrombocytopenia can be due to a constitutional deletion of 3q26.2 involving MECOM. We suggest that in case of unexplained neonatal thrombocytopenia, with even just slight facial dysmorphism, DNA microarray on peripheral blood should be considered early in the diagnostic work-up.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 3/genética , Proteínas de Unión al ADN/genética , Proto-Oncogenes/genética , Trombocitopenia/congénito , Trombocitopenia/genética , Factores de Transcripción/genética , Adulto , Hibridación Genómica Comparativa , Femenino , Humanos , Recién Nacido , Proteína del Locus del Complejo MDS1 y EV11 , Masculino , Fenotipo , Trombocitopenia/diagnóstico
13.
J Ovarian Res ; 16(1): 150, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37525239

RESUMEN

BACKGROUND: Mechanisms of development and progression of high-grade serous ovarian cancer (HGSOC) are poorly understood. EVI1 and PARP1, part of TGF-ß pathway, are upregulated in cancers with DNA repair deficiencies with DNA repair deficiencies and may influce disease progression and survival. Therefore we questioned the prognostic significance of protein expression of EVI1 alone and in combination with PARP1 and analyzed them in a cohort of patients with HGSOC. METHODS: For 562 HGSOC patients, we evaluated EVI1 and PARP1 expression by immunohistochemical staining on tissue microarrays with QuPath digital semi-automatic positive cell detection. RESULTS: High EVI1 expressing (> 30% positive tumor cells) HGSOC were associated with improved progression-free survival (PFS) (HR = 0.66, 95% CI: 0.504-0.852, p = 0.002) and overall survival (OS) (HR = 0.45, 95% CI: 0.352-0.563, p < 0.001), including multivariate analysis. Most interestingly, mutual high expression of both proteins identifies a group with particularly good prognosis. Our findings were proven technically and clinically using bioinformatical data sets for single-cell sequencing, copy number variation and gene as well as protein expression. CONCLUSIONS: EVI1 and PARP1 are robust prognostic biomarkers for favorable prognosis in HGSOC and imply further research with respect to their reciprocity.


Asunto(s)
Proteína del Locus del Complejo MDS1 y EV11 , Neoplasias Ováricas , Poli(ADP-Ribosa) Polimerasa-1 , Humanos , Femenino , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética , Biomarcadores de Tumor/genética , Proteína del Locus del Complejo MDS1 y EV11/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Pronóstico , Persona de Mediana Edad
14.
EJHaem ; 3(4): 1377-1380, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36467828

RESUMEN

Due to differences in the protein folding mechanisms, it is exceedingly rare for amyloid light chain (AL) amyloidosis and monoclonal gammopathy of renal significance (MGRS) to coexist. We herein report the first case of concurrent AL amyloidosis and a subclass of MGRS, light chain proximal tubulopathy (LCPT). The 53-year-old female was diagnosed with smoldering myeloma immunoglobulin G kappa and AL amyloidosis with deposits in fat and gastrointestinal tissue. The kidney biopsy did not show amyloid deposits but electron microscopy revealed the presence of LCPT with crystal formation in proximal tubular epithelial cells. This case illustrates the complex pathophysiology of protein deposition in monoclonal gammopathies.

15.
J Clin Oncol ; 40(22): 2479-2490, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35394800

RESUMEN

PURPOSE: Antitumor activity in preclinical models and a phase I study of patients with dedifferentiated liposarcoma (DD-LPS) was observed with selinexor. We evaluated the clinical benefit of selinexor in patients with previously treated DD-LPS whose sarcoma progressed on approved agents. METHODS: SEAL was a phase II-III, multicenter, randomized, double-blind, placebo-controlled study. Patients age 12 years or older with advanced DD-LPS who had received two-five lines of therapy were randomly assigned (2:1) to selinexor (60 mg) or placebo twice weekly in 6-week cycles (crossover permitted). The primary end point was progression-free survival (PFS). Patients who received at least one dose of study treatment were included for safety analysis (ClinicalTrials.gov identifier: NCT02606461). RESULTS: Two hundred eighty-five patients were enrolled (selinexor, n = 188; placebo, n = 97). PFS was significantly longer with selinexor versus placebo: hazard ratio (HR) 0.70 (95% CI, 0.52 to 0.95; one-sided P = .011; medians 2.8 v 2.1 months), as was time to next treatment: HR 0.50 (95% CI, 0.37 to 0.66; one-sided P < .0001; medians 5.8 v 3.2 months). With crossover, no difference was observed in overall survival. The most common treatment-emergent adverse events of any grade versus grade 3 or 4 with selinexor were nausea (151 [80.7%] v 11 [5.9]), decreased appetite (113 [60.4%] v 14 [7.5%]), and fatigue (96 [51.3%] v 12 [6.4%]). Four (2.1%) and three (3.1%) patients died in the selinexor and placebo arms, respectively. Exploratory RNA sequencing analysis identified that the absence of CALB1 expression was associated with longer PFS with selinexor compared with placebo (median 6.9 v 2.2 months; HR, 0.19; P = .001). CONCLUSION: Patients with advanced, refractory DD-LPS showed improved PFS and time to next treatment with selinexor compared with placebo. Supportive care and dose reductions mitigated side effects of selinexor. Prospective validation of CALB1 expression as a predictive biomarker for selinexor in DD-LPS is warranted.


Asunto(s)
Hidrazinas , Liposarcoma , Triazoles , Niño , Método Doble Ciego , Humanos , Hidrazinas/efectos adversos , Liposarcoma/tratamiento farmacológico , Liposarcoma/patología , Triazoles/efectos adversos
16.
Leukemia ; 35(11): 3127-3138, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33911178

RESUMEN

Deregulation of the EVI1 proto-oncogene by the GATA2 distal hematopoietic enhancer (G2DHE) is a key event in high-risk acute myeloid leukemia carrying 3q21q26 aberrations (3q-AML). Upon chromosomal rearrangement, G2DHE acquires characteristics of a super-enhancer and causes overexpression of EVI1 at 3q26.2. However, the transcription factor (TF) complex of G2DHE remains poorly characterized. The aim of this study was to unravel key components of G2DHE-bound TFs involved in the deregulation of EVI1. We have identified several CEBPA and RUNX1 binding sites to be enriched and critical for G2DHE function in 3q-AML cells. Using ChIP-SICAP (ChIP followed by selective isolation of chromatin-associated proteins), a panel of chromatin interactors of RUNX1 and CEBPA were detected in 3q-AML, including PARP1 and IKZF1. PARP1 inhibition (PARPi) caused a reduction of EVI1 expression and a decrease in EVI1-G2DHE interaction frequency, highlighting the involvement of PARP1 in oncogenic super-enhancer formation. Furthermore, 3q-AML cells were highly sensitive to PARPi and displayed morphological changes with higher rates of differentiation and apoptosis as well as depletion of CD34 + cells. In summary, integrative analysis of the 3q-AML super-enhancer complex identified CEBPA and RUNX1 associated proteins and nominated PARP1 as a potential new therapeutic target in EVI1 + 3q-AML.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Elementos de Facilitación Genéticos , Factor de Transcripción GATA2/metabolismo , Regulación Leucémica de la Expresión Génica , Reordenamiento Génico , Leucemia Mieloide Aguda/patología , Proteína del Locus del Complejo MDS1 y EV11/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Carcinogénesis , Aberraciones Cromosómicas , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Factor de Transcripción GATA2/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteína del Locus del Complejo MDS1 y EV11/genética , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas Proto-Oncogénicas c-myb/metabolismo , Translocación Genética , Células Tumorales Cultivadas
17.
Nat Commun ; 12(1): 5679, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34584081

RESUMEN

Chromosomal rearrangements are a frequent cause of oncogene deregulation in human malignancies. Overexpression of EVI1 is found in a subgroup of acute myeloid leukemia (AML) with 3q26 chromosomal rearrangements, which is often therapy resistant. In AMLs harboring a t(3;8)(q26;q24), we observed the translocation of a MYC super-enhancer (MYC SE) to the EVI1 locus. We generated an in vitro model mimicking a patient-based t(3;8)(q26;q24) using CRISPR-Cas9 technology and demonstrated hyperactivation of EVI1 by the hijacked MYC SE. This MYC SE contains multiple enhancer modules, of which only one recruits transcription factors active in early hematopoiesis. This enhancer module is critical for EVI1 overexpression as well as enhancer-promoter interaction. Multiple CTCF binding regions in the MYC SE facilitate this enhancer-promoter interaction, which also involves a CTCF binding site upstream of the EVI1 promoter. We hypothesize that this CTCF site acts as an enhancer-docking site in t(3;8) AML. Genomic analyses of other 3q26-rearranged AML patient cells point to a common mechanism by which EVI1 uses this docking site to hijack enhancers active in early hematopoiesis.


Asunto(s)
Factor de Unión a CCCTC/genética , Elementos de Facilitación Genéticos/genética , Leucemia Mieloide/genética , Proteína del Locus del Complejo MDS1 y EV11/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proto-Oncogenes/genética , Enfermedad Aguda , Factor de Unión a CCCTC/metabolismo , Cromosomas Humanos Par 3/genética , Cromosomas Humanos Par 8/genética , Regulación Leucémica de la Expresión Génica , Reordenamiento Génico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Hibridación Fluorescente in Situ/métodos , Células K562 , Cariotipificación , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patología , Regiones Promotoras Genéticas/genética , Unión Proteica , Translocación Genética
18.
Nat Commun ; 11(1): 3021, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32541670

RESUMEN

The caudal-related homeobox transcription factor CDX2 is expressed in leukemic cells but not during normal blood formation. Retroviral overexpression of Cdx2 induces AML in mice, however the developmental stage at which CDX2 exerts its effect is unknown. We developed a conditionally inducible Cdx2 mouse model to determine the effects of in vivo, inducible Cdx2 expression in hematopoietic stem and progenitor cells (HSPCs). Cdx2-transgenic mice develop myelodysplastic syndrome with progression to acute leukemia associated with acquisition of additional driver mutations. Cdx2-expressing HSPCs demonstrate enrichment of hematopoietic-specific enhancers associated with pro-differentiation transcription factors. Furthermore, treatment of Cdx2 AML with azacitidine decreases leukemic burden. Extended scheduling of low-dose azacitidine shows greater efficacy in comparison to intermittent higher-dose azacitidine, linked to more specific epigenetic modulation. Conditional Cdx2 expression in HSPCs is an inducible model of de novo leukemic transformation and can be used to optimize treatment in high-risk AML.


Asunto(s)
Factor de Transcripción CDX2/metabolismo , Células Madre Hematopoyéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Síndromes Mielodisplásicos/metabolismo , Animales , Factor de Transcripción CDX2/genética , Transformación Celular Neoplásica , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/fisiopatología
20.
J Mol Med (Berl) ; 86(4): 443-55, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18253710

RESUMEN

Dendritic cells (DCs) shape T-cell response patterns and determine early, intermediate, and late outcomes of immune recognition events. They either facilitate immunostimulation or induce tolerance, possibly determined by initial DC activation signals, such as binding Toll-like receptor (TLR) ligands. Here, we report that DC stimulation through the TLR3 ligand dsRNA [poly(I:C)] limits CD4 T-cell proliferation, curtailing adaptive immune responses. CD4+ T cells instructed by either lipopolysaccharide (LPS) or poly(I:C)-conditioned DCs promptly upregulated the activation marker CD69. Whereas LPS-pretreated DCs subsequently sustained T-cell clonal expansion, proliferation of CD4+ T cells exposed to poly(I:C)-pretreated DCs was markedly suppressed. This proliferative defect required DC-T cell contact, was independent of IFN-alpha, and was overcome by exogenous IL-2, indicating T-cell anergy. Coinciding with the downregulation, CD4+ T cells expressed the inhibitory receptor PD-1. Antibodies blocking the PD-1 ligand PD-L1 restored proliferation. dsRNA-stimulated DCs preferentially induced PD-L1, whereas poly(I:C) and LPS both upregulated the costimulatory molecule CD86 to a comparable extent. Poly(dA-dT), a ligand targeting the cytoplasmic RNA helicase pattern-recognition pathway, failed to selectively induce PD-L1 upregulation, assigning this effect to the TLR3 pathway. Poly(I:C)-conditioned DCs promoted accumulation of phosphorylated SHP-2, the intracellular phosphatase mediating PD-1 inhibitory effects. The ability of dsRNA to bias DC differentiation toward providing inhibitory signals to interacting CD4+ T cells may be instrumental in viral immune evasion. Conversely, TLR3 ligands may have therapeutic value in silencing pathogenic immune responses.


Asunto(s)
Células Dendríticas/inmunología , Ligandos , Receptor Toll-Like 3/inmunología , Linfocitos T CD4-Positivos/inmunología , Humanos , Interferón-alfa/inmunología , Lipopolisacáridos/inmunología , ARN Bicatenario/genética , ARN Bicatenario/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA