Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35210363

RESUMEN

Cancer-associated cachexia (CAC) is a hypermetabolic syndrome characterized by unintended weight loss due to the atrophy of adipose tissue and skeletal muscle. A phenotypic switch from white to beige adipocytes, a phenomenon called browning, accelerates CAC by increasing the dissipation of energy as heat. Addressing the mechanisms of white adipose tissue (WAT) browning in CAC, we now show that cachexigenic tumors activate type 2 immunity in cachectic WAT, generating a neuroprotective environment that increases peripheral sympathetic activity. Increased sympathetic activation, in turn, results in increased neuronal catecholamine synthesis and secretion, ß-adrenergic activation of adipocytes, and induction of WAT browning. Two genetic mouse models validated this progression of events. 1) Interleukin-4 receptor deficiency impeded the alternative activation of macrophages, reduced sympathetic activity, and restrained WAT browning, and 2) reduced catecholamine synthesis in peripheral dopamine ß-hydroxylase (DBH)-deficient mice prevented cancer-induced WAT browning and adipose atrophy. Targeting the intraadipose macrophage-sympathetic neuron cross-talk represents a promising therapeutic approach to ameliorate cachexia in cancer patients.


Asunto(s)
Tejido Adiposo Pardo/patología , Caquexia/patología , Comunicación Celular , Neoplasias/complicaciones , Neuronas/patología , Sistema Nervioso Simpático/patología , Animales , Caquexia/etiología , Caquexia/metabolismo , Expresión Génica , Xenoinjertos , Humanos , Ratones , Neoplasias/metabolismo , Receptores Adrenérgicos beta/metabolismo , Termogénesis
2.
J Lipid Res ; 64(11): 100457, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37832604

RESUMEN

Intracellular lipolysis-the enzymatic breakdown of lipid droplet-associated triacylglycerol (TAG)-depends on the cooperative action of several hydrolytic enzymes and regulatory proteins, together designated as lipolysome. Adipose triglyceride lipase (ATGL) acts as a major cellular TAG hydrolase and core effector of the lipolysome in many peripheral tissues. Neurons initiate lipolysis independently of ATGL via DDHD domain-containing 2 (DDHD2), a multifunctional lipid hydrolase whose dysfunction causes neuronal TAG deposition and hereditary spastic paraplegia. Whether and how DDHD2 cooperates with other lipolytic enzymes is currently unknown. In this study, we further investigated the enzymatic properties and functions of DDHD2 in neuroblastoma cells and primary neurons. We found that DDHD2 hydrolyzes multiple acylglycerols in vitro and substantially contributes to neutral lipid hydrolase activities of neuroblastoma cells and brain tissue. Substrate promiscuity of DDHD2 allowed its engagement at different steps of the lipolytic cascade: In neuroblastoma cells, DDHD2 functioned exclusively downstream of ATGL in the hydrolysis of sn-1,3-diacylglycerol (DAG) isomers but was dispensable for TAG hydrolysis and lipid droplet homeostasis. In primary cortical neurons, DDHD2 exhibited lipolytic control over both, DAG and TAG, and complemented ATGL-dependent TAG hydrolysis. We conclude that neuronal cells use noncanonical configurations of the lipolysome and engage DDHD2 as dual TAG/DAG hydrolase in cooperation with ATGL.


Asunto(s)
Lipólisis , Humanos , Lipasa/genética , Lipasa/metabolismo , Neuronas/metabolismo , Paraplejía , Fosfolipasas/metabolismo , Triglicéridos/metabolismo
3.
J Am Chem Soc ; 144(14): 6237-6250, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35362954

RESUMEN

Chronically elevated circulating fatty acid levels promote lipid accumulation in nonadipose tissues and cause lipotoxicity. Adipose triglyceride lipase (ATGL) critically determines the release of fatty acids from white adipose tissue, and accumulating evidence suggests that inactivation of ATGL has beneficial effects on lipotoxicity-driven disorders including insulin resistance, steatohepatitis, and heart disease, classifying ATGL as a promising drug target. Here, we report on the development and biological characterization of the first small-molecule inhibitor of human ATGL. This inhibitor, designated NG-497, selectively inactivates human and nonhuman primate ATGL but not structurally and functionally related lipid hydrolases. We demonstrate that NG-497 abolishes lipolysis in human adipocytes in a dose-dependent and reversible manner. The combined analysis of mouse- and human-selective inhibitors, chimeric ATGL proteins, and homology models revealed detailed insights into enzyme-inhibitor interactions. NG-497 binds ATGL within a hydrophobic cavity near the active site. Therein, three amino acid residues determine inhibitor efficacy and species selectivity and thus provide the molecular scaffold for selective inhibition.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Adipocitos , Ácidos Grasos/metabolismo , Lipólisis , Aciltransferasas/metabolismo , Adipocitos/metabolismo , Animales , Humanos , Lipólisis/fisiología , Ratones
4.
J Lipid Res ; 61(7): 995-1003, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32350080

RESUMEN

Bis(monoacylglycero)phosphate (BMP), also known as lysobisphosphatidic acid, is a phospholipid that promotes lipid sorting in late endosomes/lysosomes by activating lipid hydrolases and lipid transfer proteins. Changes in the cellular BMP content therefore reflect an altered metabolic activity of the endolysosomal system. Surprisingly, little is known about the physiological regulation of BMP. In this study, we investigated the effects of nutritional and metabolic factors on BMP profiles of whole tissues and parenchymal and nonparenchymal cells. Tissue samples were obtained from fed, fasted, 2 h refed, and insulin-treated mice, as well as from mice housed at 5°C, 22°C, or 30°C. These tissues exhibited distinct BMP profiles that were regulated by the nutritional state in a tissue-specific manner. Insulin treatment was not sufficient to mimic refeeding-induced changes in tissue BMP levels, indicating that BMP metabolism is regulated by other hormonal or nutritional factors. Tissue fractionation experiments revealed that fasting drastically elevates BMP levels in hepatocytes and pancreatic cells. Furthermore, we observed that the BMP content in brown adipose tissue strongly depends on housing temperatures. In conclusion, our observations suggest that BMP concentrations adapt to the metabolic state in a tissue- and cell-type-specific manner in mice. Drastic changes observed in hepatocytes, pancreatic cells, and brown adipocytes suggest that BMP plays a role in the functional adaption to nutrient starvation and ambient temperature.


Asunto(s)
Lisofosfolípidos/metabolismo , Lisosomas/metabolismo , Monoglicéridos/metabolismo , Animales , Endosomas/metabolismo , Macrófagos/citología , Ratones
5.
Bioorg Med Chem ; 28(16): 115610, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32690265

RESUMEN

High serum fatty acid (FA) levels are causally linked to the development of insulin resistance, which eventually progresses to type 2 diabetes and non-alcoholic fatty liver disease (NAFLD) generalized in the term metabolic syndrome. Adipose triglyceride lipase (ATGL) is the initial enzyme in the hydrolysis of intracellular triacylglycerol (TG) stores, liberating fatty acids that are released from adipocytes into the circulation. Hence, ATGL-specific inhibitors have the potential to lower circulating FA concentrations, and counteract the development of insulin resistance and NAFLD. In this article, we report about structure-activity relationship (SAR) studies of small molecule inhibitors of murine ATGL which led to the development of Atglistatin. Atglistatin is a specific inhibitor of murine ATGL, which has proven useful for the validation of ATGL as a potential drug target.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Lipasa/antagonistas & inhibidores , Compuestos de Fenilurea/química , Compuestos de Fenilurea/farmacología , Animales , Descubrimiento de Drogas , Lipasa/química , Lipasa/metabolismo , Lipólisis/efectos de los fármacos , Ratones , Relación Estructura-Actividad , Triglicéridos/sangre
6.
J Lipid Res ; 60(7): 1284-1292, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31048404

RESUMEN

Monoacylglycerol lipase (MGL) is the rate-limiting enzyme in the degradation of monoacylglycerols. To examine the role of MGL in hepatic steatosis, WT and MGL KO (MGL-/-) mice were challenged with a Western diet (WD) over 12 weeks. Lipid metabolism, inflammation, and fibrosis were assessed by serum biochemistry, histology, and gene-expression profiling of liver and adipose depots. Intestinal fat absorption was measured by gas chromatography. Primary adipocyte and 3T3-L1 cells were analyzed by flow cytometry and Western blot. Human hepatocytes were treated with MGL inhibitor JZL184. The absence of MGL protected mice from hepatic steatosis by repressing key lipogenic enzymes in liver (Srebp1c, Pparγ2, and diacylglycerol O-acyltransferase 1), while promoting FA oxidation. Liver inflammation was diminished in MGL-/- mice fed a WD, as evidenced by diminished epidermal growth factor-like module-containing mucin-like hormone receptor-like 1 (F4/80) staining and C-C motif chemokine ligand 2 gene expression, whereas fibrosis remained unchanged. Absence of MGL promoted fat storage in gonadal white adipose tissue (gWAT) with increased lipogenesis and unchanged lipolysis, diminished inflammation in gWAT, and subcutaneous AT. Intestinal fat malabsorption prevented ectopic lipid accumulation in livers of MGL-/- mice fed a WD. In vitro experiments demonstrated increased adipocyte size/lipid content driven by PPARγ. In conclusion, our data uncover that MGL deletion improves some aspects of nonalcoholic fatty liver disease by promoting lipid storage in gWAT and fat malabsorption.


Asunto(s)
Tejido Adiposo/metabolismo , Hígado/enzimología , Hígado/metabolismo , Monoacilglicerol Lipasas/metabolismo , Ácido 3-Hidroxibutírico/sangre , Células 3T3-L1 , Adiponectina/sangre , Animales , Western Blotting , Células Cultivadas , Ácidos Grasos/sangre , Glicerol/sangre , Humanos , Inmunohistoquímica , Insulina/sangre , Absorción Intestinal/genética , Absorción Intestinal/fisiología , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología , Lipólisis/genética , Lipólisis/fisiología , Ratones , Ratones Endogámicos C57BL , Monoacilglicerol Lipasas/deficiencia , Monoacilglicerol Lipasas/genética , Obesidad/genética , Obesidad/metabolismo , Oxidación-Reducción , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Triglicéridos/sangre
7.
J Lipid Res ; 60(5): 1020-1031, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30894461

RESUMEN

Bis(monoacylglycerol)phosphate (BMP) is a phospholipid that is crucial for lipid degradation and sorting in acidic organelles. Genetic and drug-induced lysosomal storage disorders (LSDs) are associated with increased BMP concentrations in tissues and in the circulation. Data on BMP in disorders other than LSDs, however, are scarce, and key enzymes regulating BMP metabolism remain elusive. Here, we demonstrate that common metabolic disorders and the intracellular BMP hydrolase α/ß-hydrolase domain-containing 6 (ABHD6) affect BMP metabolism in mice and humans. In mice, dietary lipid overload strongly affects BMP concentration and FA composition in the liver and plasma, similar to what has been observed in LSDs. Notably, distinct changes in the BMP FA profile enable a clear distinction between lipid overload and drug-induced LSDs. Global deletion of ABHD6 increases circulating BMP concentrations but does not cause LSDs. In humans, nonalcoholic fatty liver disease and liver cirrhosis affect the serum BMP FA composition and concentration. Furthermore, we identified a patient with a loss-of-function mutation in the ABHD6 gene, leading to an altered circulating BMP profile. In conclusion, our results suggest that common metabolic diseases and ABHD6 affect BMP metabolism in mice and humans.


Asunto(s)
Lisofosfolípidos/metabolismo , Enfermedades Metabólicas/metabolismo , Monoacilglicerol Lipasas/metabolismo , Monoglicéridos/metabolismo , Adulto , Anciano , Animales , Femenino , Humanos , Lisofosfolípidos/sangre , Masculino , Enfermedades Metabólicas/sangre , Ratones , Ratones Noqueados , Ratones Transgénicos , Persona de Mediana Edad , Monoacilglicerol Lipasas/deficiencia , Monoacilglicerol Lipasas/genética , Monoglicéridos/sangre , Fenotipo
8.
J Lipid Res ; 59(3): 531-541, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29326160

RESUMEN

Elaborate control mechanisms of intracellular triacylglycerol (TAG) breakdown are critically involved in the maintenance of energy homeostasis. Hypoxia-inducible lipid droplet-associated protein (HILPDA)/hypoxia-inducible gene-2 (Hig-2) has been shown to affect intracellular TAG levels, yet, the underlying molecular mechanisms are unclear. Here, we show that HILPDA inhibits adipose triglyceride lipase (ATGL), the enzyme catalyzing the first step of intracellular TAG hydrolysis. HILPDA shares structural similarity with G0/G1 switch gene 2 (G0S2), an established inhibitor of ATGL. HILPDA inhibits ATGL activity in a dose-dependent manner with an IC50 value of ∼2 µM. ATGL inhibition depends on the direct physical interaction of both proteins and involves the N-terminal hydrophobic region of HILPDA and the N-terminal patatin domain-containing segment of ATGL. Finally, confocal microscopy combined with Förster resonance energy transfer-fluorescence lifetime imaging microscopy analysis indicated that HILPDA and ATGL colocalize and physically interact intracellularly. These findings provide a rational biochemical explanation for the tissue-specific increased TAG accumulation in HILPDA-overexpressing transgenic mouse models.


Asunto(s)
Adipocitos/enzimología , Tejido Adiposo/enzimología , Lipasa/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Triglicéridos/metabolismo , Humanos , Lipasa/metabolismo
9.
J Biol Chem ; 291(2): 913-23, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26565024

RESUMEN

Monoglyceride lipase (MGL) is required for efficient hydrolysis of the endocannabinoid 2-arachidonoylglyerol (2-AG) in the brain generating arachidonic acid (AA) and glycerol. This metabolic function makes MGL an interesting target for the treatment of neuroinflammation, since 2-AG exhibits anti-inflammatory properties and AA is a precursor for pro-inflammatory prostaglandins. Astrocytes are an important source of AA and 2-AG, and highly express MGL. In the present study, we dissected the distinct contribution of MGL in astrocytes on brain 2-AG and AA metabolism by generating a mouse model with genetic deletion of MGL specifically in astrocytes (MKO(GFAP)). MKO(GFAP) mice exhibit moderately increased 2-AG and reduced AA levels in brain. Minor accumulation of 2-AG in the brain of MKO(GFAP) mice does not cause cannabinoid receptor desensitization as previously observed in mice globally lacking MGL. Importantly, MKO(GFAP) mice exhibit reduced brain prostaglandin E2 and pro-inflammatory cytokine levels upon peripheral lipopolysaccharide (LPS) administration. These observations indicate that MGL-mediated degradation of 2-AG in astrocytes provides AA for prostaglandin synthesis promoting LPS-induced neuroinflammation. The beneficial effect of astrocyte-specific MGL-deficiency is not fully abrogated by the inverse cannabinoid receptor 1 agonist SR141716 (Rimonabant) suggesting that the anti-inflammatory effects are rather caused by reduced prostaglandin synthesis than by activation of cannabinoid receptors. In conclusion, our data demonstrate that MGL in astrocytes is an important regulator of 2-AG levels, AA availability, and neuroinflammation.


Asunto(s)
Astrocitos/enzimología , Eliminación de Gen , Inflamación/enzimología , Inflamación/patología , Monoacilglicerol Lipasas/metabolismo , Sistema Nervioso/enzimología , Sistema Nervioso/patología , Animales , Ácidos Araquidónicos/metabolismo , Astrocitos/patología , Conducta Animal , Encéfalo/enzimología , Citocinas/metabolismo , Endocannabinoides/metabolismo , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Glicéridos/metabolismo , Lipopolisacáridos , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Microglía/patología , Especificidad de Órganos , Receptor Cannabinoide CB1/metabolismo
10.
J Biol Chem ; 290(50): 29869-81, 2015 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-26491015

RESUMEN

α/ß Hydrolase domain-containing 6 (ABHD6) can act as monoacylglycerol hydrolase and is believed to play a role in endocannabinoid signaling as well as in the pathogenesis of obesity and liver steatosis. However, the mechanistic link between gene function and disease is incompletely understood. Here we aimed to further characterize the role of ABHD6 in lipid metabolism. We show that mouse and human ABHD6 degrade bis(monoacylglycero)phosphate (BMP) with high specific activity. BMP, also known as lysobisphosphatidic acid, is enriched in late endosomes/lysosomes, where it plays a key role in the formation of intraluminal vesicles and in lipid sorting. Up to now, little has been known about the catabolism of this lipid. Our data demonstrate that ABHD6 is responsible for ∼ 90% of the BMP hydrolase activity detected in the liver and that knockdown of ABHD6 increases hepatic BMP levels. Tissue fractionation and live-cell imaging experiments revealed that ABHD6 co-localizes with late endosomes/lysosomes. The enzyme is active at cytosolic pH and lacks acid hydrolase activity, implying that it degrades BMP exported from acidic organelles or de novo-formed BMP. In conclusion, our data suggest that ABHD6 controls BMP catabolism and is therefore part of the late endosomal/lysosomal lipid-sorting machinery.


Asunto(s)
Endosomas/metabolismo , Lisofosfolípidos/metabolismo , Lisosomas/metabolismo , Monoacilglicerol Lipasas/metabolismo , Monoglicéridos/metabolismo , Humanos , Hidrólisis
11.
Biochim Biophys Acta ; 1851(7): 937-45, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25732851

RESUMEN

Hepatic stellate cells (HSCs) store triglycerides (TGs) and retinyl ester (RE) in cytosolic lipid droplets. RE stores are degraded following retinoid starvation or in response to pathogenic stimuli resulting in HSC activation. At present, the major enzymes catalyzing lipid degradation in HSCs are unknown. In this study, we investigated whether adipose triglyceride lipase (ATGL) is involved in RE catabolism of HSCs. Additionally, we compared the effects of ATGL deficiency and hormone-sensitive lipase (HSL) deficiency, a known RE hydrolase (REH), on RE stores in liver and adipose tissue. We show that ATGL degrades RE even in the presence of TGs, implicating that these substrates compete for ATGL binding. REH activity was stimulated and inhibited by comparative gene identification-58 and G0/G1 switch gene-2, respectively, the physiological regulators of ATGL activity. In cultured primary murine HSCs, pharmacological inhibition of ATGL, but not HSL, increased RE accumulation. In mice globally lacking ATGL or HSL, RE contents in white adipose tissue were decreased or increased, respectively, while plasma retinol and liver RE levels remained unchanged. In conclusion, our study shows that ATGL acts as REH in HSCs promoting the degradation of RE stores in addition to its established function as TG lipase. HSL is the predominant REH in adipocytes but does not affect lipid mobilization in HSCs.


Asunto(s)
Células Estrelladas Hepáticas/metabolismo , Lipasa/fisiología , Retinoides/metabolismo , Triglicéridos/metabolismo , Adipocitos/enzimología , Adipocitos/metabolismo , Animales , Células COS , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Chlorocebus aethiops , Femenino , Metabolismo de los Lípidos/genética , Ratones , Ratones Noqueados , Esterol Esterasa/genética , Esterol Esterasa/metabolismo
12.
J Hepatol ; 63(2): 437-45, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25733154

RESUMEN

BACKGROUND & AIMS: Adipose tissue (AT)-derived fatty acids (FAs) are utilized for hepatic triacylglycerol (TG) generation upon fasting. However, their potential impact as signaling molecules is not established. Herein we examined the role of exogenous AT-derived FAs in the regulation of hepatic gene expression by investigating mice with a defect in AT-derived FA supply to the liver. METHODS: Plasma FA levels, tissue TG hydrolytic activities and lipid content were determined in mice lacking the lipase co-activator comparative gene identification-58 (CGI-58) selectively in AT (CGI-58-ATko) applying standard protocols. Hepatic expression of lipases, FA oxidative genes, transcription factors, ER stress markers, hormones and cytokines were determined by qRT-PCR, Western blotting and ELISA. RESULTS: Impaired AT-derived FA supply upon fasting of CGI-58-ATko mice causes a marked defect in liver PPARα-signaling and nuclear CREBH translocation. This severely reduced the expression of respective target genes such as the ATGL inhibitor G0/G1 switch gene-2 (G0S2) and the endocrine metabolic regulator FGF21. These changes could be reversed by lipid administration and raising plasma FA levels. Impaired AT-lipolysis failed to induce hepatic G0S2 expression in fasted CGI-58-ATko mice leading to enhanced ATGL-mediated TG-breakdown strongly reducing hepatic TG deposition. On high fat diet, impaired AT-lipolysis counteracts hepatic TG accumulation and liver stress linked to improved systemic insulin sensitivity. CONCLUSIONS: AT-derived FAs are a critical regulator of hepatic fasting gene expression required for the induction of G0S2-expression in the liver to control hepatic TG-breakdown. Interfering with AT-lipolysis or hepatic G0S2 expression represents an effective strategy for the treatment of hepatic steatosis.


Asunto(s)
Tejido Adiposo/metabolismo , Ayuno/metabolismo , Ácidos Grasos/metabolismo , Hígado Graso/genética , Factores de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica , Hígado/metabolismo , Animales , Western Blotting , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Hígado Graso/metabolismo , Hígado Graso/patología , Factores de Crecimiento de Fibroblastos/biosíntesis , Genes de Cambio , Hígado/ultraestructura , Ratones , Ratones Transgénicos , Microscopía Electrónica , ARN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
13.
Nat Chem Biol ; 9(12): 785-7, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24096302

RESUMEN

Adipose triglyceride lipase (ATGL) is rate limiting in the mobilization of fatty acids from cellular triglyceride stores. This central role in lipolysis marks ATGL as an interesting pharmacological target as deregulated fatty acid metabolism is closely linked to dyslipidemic and metabolic disorders. Here we report on the development and characterization of a small-molecule inhibitor of ATGL. Atglistatin is selective for ATGL and reduces fatty acid mobilization in vitro and in vivo.


Asunto(s)
Lipasa/antagonistas & inhibidores , Lipasa/metabolismo , Compuestos de Fenilurea/farmacología , Tejido Adiposo Blanco , Animales , Regulación Enzimológica de la Expresión Génica , Concentración 50 Inhibidora , Lipasa/genética , Ratones , Ratones Noqueados , Estructura Molecular
14.
Nat Commun ; 15(1): 2516, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514628

RESUMEN

ATGL is a key enzyme in intracellular lipolysis and plays an important role in metabolic and cardiovascular diseases. ATGL is tightly regulated by a known set of protein-protein interaction partners with activating or inhibiting functions in the control of lipolysis. Here, we use deep mutational protein interaction perturbation scanning and generate comprehensive profiles of single amino acid variants that affect the interactions of ATGL with its regulatory partners: CGI-58, G0S2, PLIN1, PLIN5 and CIDEC. Twenty-three ATGL amino acid variants yield a specific interaction perturbation pattern when validated in co-immunoprecipitation experiments in mammalian cells. We identify and characterize eleven highly selective ATGL switch mutations which affect the interaction of one of the five partners without affecting the others. Switch mutations thus provide distinct interaction determinants for ATGL's key regulatory proteins at an amino acid resolution. When we test triglyceride hydrolase activity in vitro and lipolysis in cells, the activity patterns of the ATGL switch variants trace to their protein interaction profile. In the context of structural data, the integration of variant binding and activity profiles provides insights into the regulation of lipolysis and the impact of mutations in human disease.


Asunto(s)
Lipasa , Lipólisis , Animales , Humanos , Lipólisis/genética , Lipasa/genética , Lipasa/metabolismo , Proteínas de Ciclo Celular/metabolismo , Sitios de Unión , Aminoácidos/metabolismo , Mutación , Mamíferos/metabolismo
15.
J Lipid Res ; 54(4): 1092-102, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23345410

RESUMEN

Cardiac triacylglycerol (TG) catabolism critically depends on the TG hydrolytic activity of adipose triglyceride lipase (ATGL). Perilipin 5 (Plin5) is expressed in cardiac muscle (CM) and has been shown to interact with ATGL and its coactivator comparative gene identification-58 (CGI-58). Furthermore, ectopic Plin5 expression increases cellular TG content and Plin5-deficient mice exhibit reduced cardiac TG levels. In this study we show that mice with cardiac muscle-specific overexpression of perilipin 5 (CM-Plin5) massively accumulate TG in CM, which is accompanied by moderately reduced fatty acid (FA) oxidizing gene expression levels. Cardiac lipid droplet (LD) preparations from CM of CM-Plin5 mice showed reduced ATGL- and hormone-sensitive lipase-mediated TG mobilization implying that Plin5 overexpression restricts cardiac lipolysis via the formation of a lipolytic barrier. To test this hypothesis, we analyzed TG hydrolytic activities in preparations of Plin5-, ATGL-, and CGI-58-transfected cells. In vitro ATGL-mediated TG hydrolysis of an artificial micellar TG substrate was not inhibited by the presence of Plin5, whereas Plin5-coated LDs were resistant toward ATGL-mediated TG catabolism. These findings strongly suggest that Plin5 functions as a lipolytic barrier to protect the cardiac TG pool from uncontrolled TG mobilization and the excessive release of free FAs.


Asunto(s)
Cardiomiopatías/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipólisis/fisiología , Proteínas Musculares/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/metabolismo , Animales , Células COS , Cardiomiopatías/genética , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Immunoblotting , Péptidos y Proteínas de Señalización Intracelular/genética , Lipasa/genética , Lipasa/metabolismo , Lipólisis/genética , Ratones , Ratones Transgénicos , Proteínas Musculares/genética , Miocardio/metabolismo , Miocardio/patología , Triglicéridos/metabolismo
16.
Mol Metab ; 61: 101510, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35504532

RESUMEN

OBJECTIVES: Lysosomal acid lipase (LAL) is the key enzyme, which degrades neutral lipids at an acidic pH in lysosomes. The role of LAL in various cellular processes has mostly been studied in LAL-knockout mice, which share phenotypical characteristics with humans suffering from LAL deficiency. In vitro, the cell-specific functions of LAL have been commonly investigated by using the LAL inhibitors Lalistat-1 and Lalistat-2. METHODS: We performed lipid hydrolase activity assays and serine hydrolase-specific activity-based labeling combined with quantitative proteomics to investigate potential off-target effects of Lalistat-1 and -2. RESULTS: Pharmacological LAL inhibition but not genetic loss of LAL impairs isoproterenol-stimulated lipolysis as well as neutral triglyceride and cholesteryl ester hydrolase activities. Apart from LAL, Lalistat-1 and -2 also inhibit major cytosolic lipid hydrolases responsible for lipid degradation in primary cells at neutral pH through off-target effects. Their binding to the active center of the enzymes leads to a decrease in neutral lipid hydrolase activities in cells overexpressing the respective enzymes. CONCLUSIONS: Our findings are critically important since they demonstrate that commonly used concentrations of these inhibitors are not suitable to investigate the role of LAL-specific lipolysis in lysosomal function, signaling pathways, and autophagy. The interpretation of their effects on lipid metabolism should be taken with caution and the applied inhibitor concentrations in cell culture studies should not exceed 1 µM.


Asunto(s)
Carbamatos/farmacología , Esterol Esterasa , Tiadiazoles/farmacología , Enfermedad de Wolman , Animales , Hidrolasas/metabolismo , Metabolismo de los Lípidos , Ratones , Esterol Esterasa/metabolismo , Triglicéridos , Enfermedad de Wolman/genética , Enfermedad de Wolman/metabolismo
17.
EBioMedicine ; 86: 104349, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36371986

RESUMEN

BACKGROUND: The application of cold exposure has emerged as an approach to enhance whole-body lipid catabolism. The global effect of cold exposure on the lipidome in humans has been reported with mixed results depending on intensity and duration of cold. METHODS: This secondary study was based on data from a previous randomized cross-over trial (ClinicalTrials.gov ID: NCT03012113). We performed sequential lipidomic profiling in serum during 120 min cold exposure of human volunteers. Next, the intracellular lipolysis was blocked in mice (eighteen 10-week-old male wild-type mice C57BL/6J) using a small-molecule inhibitor of adipose triglyceride lipase (ATGL; Atglistatin), and mice were exposed to cold for a similar duration. The quantitative lipidomic profiling was assessed in-depth using the Lipidyzer platform. FINDINGS: In humans, cold exposure gradually increased circulating free fatty acids reaching a maximum at 60 min, and transiently decreased total triacylglycerols (TAGs) only at 30 min. A broad range of TAG species was initially decreased, in particular unsaturated and polyunsaturated TAG species with ≤5 double bonds, while after 120 min a significant increase was observed for polyunsaturated TAG species with ≥6 double bonds in humans. The mechanistic study in mice revealed that the cold-induced increase in polyunsaturated TAGs was largely prevented by blocking adipose triglyceride lipase. INTERPRETATION: We interpret these findings as that cold exposure feeds thermogenic tissues with TAG-derived fatty acids for combustion, resulting in a decrease of circulating TAG species, followed by increased hepatic production of polyunsaturated TAG species induced by liberation of free fatty acids stemming from adipose tissue. FUNDING: This work was supported by the Netherlands CardioVascular Research Initiative: 'the Dutch Heart Foundation, Dutch Federation of University Medical Centers, the Netherlands Organisation for Health Research and Development and the Royal Netherlands Academy of Sciences' [CVON2017-20 GENIUS-II] to Patrick C.N. Rensen. Borja Martinez-Tellez is supported by individual postdoctoral grant from the Fundación Alfonso Martin Escudero and by a Maria Zambrano fellowship by the Ministerio de Universidades y la Unión Europea - NextGenerationEU (RR_C_2021_04). Lucas Jurado-Fasoli was supported by an individual pre-doctoral grant from the Spanish Ministry of Education (FPU19/01609) and with an Albert Renold Travel Fellowship from the European Foundation for the Study of Diabetes (EFSD). Martin Giera was partially supported by NWO XOmics project #184.034.019.


Asunto(s)
Frío , Ácidos Grasos no Esterificados , Lipólisis , Triglicéridos , Animales , Humanos , Masculino , Ratones , Tejido Adiposo/metabolismo , Estudios Cruzados , Ácidos Grasos no Esterificados/sangre , Ácidos Grasos no Esterificados/metabolismo , Lipasa/metabolismo , Ratones Endogámicos C57BL , Triglicéridos/sangre , Triglicéridos/metabolismo
18.
Cardiovasc Res ; 118(11): 2488-2505, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34061169

RESUMEN

AIMS: Heart failure (HF) is characterized by an overactivation of ß-adrenergic signalling that directly contributes to impairment of myocardial function. Moreover, ß-adrenergic overactivation induces adipose tissue lipolysis, which may further worsen the development of HF. Recently, we demonstrated that adipose tissue-specific deletion of adipose triglyceride lipase (ATGL) prevents pressure-mediated HF in mice. In this study, we investigated the cardioprotective effects of a new pharmacological inhibitor of ATGL, Atglistatin, predominantly targeting ATGL in adipose tissue, on catecholamine-induced cardiac damage. METHODS AND RESULTS: Male 129/Sv mice received repeated injections of isoproterenol (ISO, 25 mg/kg BW) to induce cardiac damage. Five days prior to ISO application, oral Atglistatin (2 mmol/kg diet) or control treatment was started. Two and twelve days after the last ISO injection cardiac function was analysed by echocardiography. The myocardial deformation was evaluated using speckle-tracking-technique. Twelve days after the last ISO injection, echocardiographic analysis revealed a markedly impaired global longitudinal strain, which was significantly improved by the application of Atglistatin. No changes in ejection fraction were observed. Further studies included histological-, WB-, and RT-qPCR-based analysis of cardiac tissue, followed by cell culture experiments and mass spectrometry-based lipidome analysis. ISO application induced subendocardial fibrosis and a profound pro-apoptotic cardiac response, as demonstrated using an apoptosis-specific gene expression-array. Atglistatin treatment led to a dramatic reduction of these pro-fibrotic and pro-apoptotic processes. We then identified a specific set of fatty acids (FAs) liberated from adipocytes under ISO stimulation (palmitic acid, palmitoleic acid, and oleic acid), which induced pro-apoptotic effects in cardiomyocytes. Atglistatin significantly blocked this adipocytic FA secretion. CONCLUSION: This study demonstrates cardioprotective effects of Atglistatin in a mouse model of catecholamine-induced cardiac damage/dysfunction, involving anti-apoptotic and anti-fibrotic actions. Notably, beneficial cardioprotective effects of Atglistatin are likely mediated by non-cardiac actions, supporting the concept that pharmacological targeting of adipose tissue may provide an effective way to treat cardiac dysfunction.


Asunto(s)
Catecolaminas , Insuficiencia Cardíaca , Tejido Adiposo/metabolismo , Adrenérgicos/metabolismo , Adrenérgicos/farmacología , Animales , Catecolaminas/metabolismo , Lipasa/genética , Lipasa/metabolismo , Lipólisis , Masculino , Ratones , Compuestos de Fenilurea
19.
Nat Metab ; 3(11): 1445-1465, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34799702

RESUMEN

The perception that intracellular lipolysis is a straightforward process that releases fatty acids from fat stores in adipose tissue to generate energy has experienced major revisions over the last two decades. The discovery of new lipolytic enzymes and coregulators, the demonstration that lipophagy and lysosomal lipolysis contribute to the degradation of cellular lipid stores and the characterization of numerous factors and signalling pathways that regulate lipid hydrolysis on transcriptional and post-transcriptional levels have revolutionized our understanding of lipolysis. In this review, we focus on the mechanisms that facilitate intracellular fatty-acid mobilization, drawing on canonical and noncanonical enzymatic pathways. We summarize how intracellular lipolysis affects lipid-mediated signalling, metabolic regulation and energy homeostasis in multiple organs. Finally, we examine how these processes affect pathogenesis and how lipolysis may be targeted to potentially prevent or treat various diseases.


Asunto(s)
Tejido Adiposo/fisiología , Movilización Lipídica , Lipólisis/fisiología , Tejido Adiposo/efectos de los fármacos , Animales , Biomarcadores , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Metabolismo Energético/efectos de los fármacos , Ácidos Grasos/metabolismo , Regulación Enzimológica de la Expresión Génica , Humanos , Movilización Lipídica/efectos de los fármacos , Lipólisis/efectos de los fármacos , Redes y Vías Metabólicas/efectos de los fármacos , Terapia Molecular Dirigida , Procesamiento Proteico-Postraduccional , Triglicéridos/metabolismo
20.
Neuropharmacology ; 150: 134-144, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30914306

RESUMEN

Cannabinoids exert neuroprotection in a wide array of preclinical models. A number of these studies has focused on cannabinoid CB1 receptors in striatal medium spiny neurons (MSNs) and the most characteristic MSN-degenerative disease, Huntington's disease (HD). Accruing evidence supports that astrocytes contribute to drive HD progression, and that they express CB1 receptors, degrade endocannabinoids, and modulate endocannabinergic transmission. However, the possible role of the astroglial endocannabinoid system in controlling MSN integrity remains unknown. Here, we show that JZL-184, a selective inhibitor of monoacylglycerol lipase (MGL), the key enzyme that deactivates the endocannabinoid 2-arachidonoylglycerol, prevented the mutant huntingtin-induced up-regulation of the pro-inflammatory cytokine tumor necrosis factor-α in primary mouse striatal astrocytes via CB1 receptors. To study the role of astroglial MGL in vivo, we injected stereotactically into the mouse dorsal striatum viral vectors that encode mutant or normal huntingtin under the control of the glial fibrillary acidic protein promoter. We observed that, in wild-type mice, pharmacological blockade of MGL with JZL-184 (8 mg/kg/day, i.p.) conferred neuroprotection against mutant huntingtin-induced striatal damage, as evidenced by the prevention of MSN loss, astrogliosis, and motor coordination impairment. We next found that conditional mutant mice bearing a genetic deletion of MGL selectively in astroglial cells (MGLfloxed/floxed;GFAP-Cre/+ mice) were resistant to mutant huntingtin-induced MSN loss, astrogliosis, and motor coordination impairment. Taken together, these data support that astroglial MGL controls the availability of a 2-arachidonoylglycerol pool that ensues protection of MSNs in the mouse striatum in vivo, thus providing a potential druggable target for reducing striatal neurodegeneration.


Asunto(s)
Astrocitos/metabolismo , Cuerpo Estriado/metabolismo , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Monoacilglicerol Lipasas/metabolismo , Neuronas/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/patología , Benzodioxoles/farmacología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Proteína Ácida Fibrilar de la Glía/metabolismo , Enfermedad de Huntington/patología , Ratones , Monoacilglicerol Lipasas/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Neuronas/patología , Piperidinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA