Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell ; 167(7): 1803-1813.e12, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27984728

RESUMEN

There is growing evidence that stress-coping mechanisms represent tumor cell vulnerabilities that may function as therapeutically beneficial targets. Recent work has delineated an integrated stress adaptation mechanism that is characterized by the formation of cytoplasmic mRNA and protein foci, termed stress granules (SGs). Here, we demonstrate that SGs are markedly elevated in mutant KRAS cells following exposure to stress-inducing stimuli. The upregulation of SGs by mutant KRAS is dependent on the production of the signaling lipid molecule 15-deoxy-delta 12,14 prostaglandin J2 (15-d-PGJ2) and confers cytoprotection against stress stimuli and chemotherapeutic agents. The secretion of 15-d-PGJ2 by mutant KRAS cells is sufficient to enhance SG formation and stress resistance in cancer cells that are wild-type for KRAS. Our findings identify a mutant KRAS-dependent cell non-autonomous mechanism that may afford the establishment of a stress-resistant niche that encompasses different tumor subclones. These results should inform the design of strategies to eradicate tumor cell communities.


Asunto(s)
Adenocarcinoma/patología , Neoplasias del Colon/metabolismo , Gránulos Citoplasmáticos/metabolismo , Neoplasias Pancreáticas/patología , Prostaglandina D2/análogos & derivados , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/metabolismo , Animales , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Resistencia a Antineoplásicos , Factor 4A Eucariótico de Iniciación/metabolismo , Femenino , Xenoinjertos , Humanos , Ratones , Mutación , Trasplante de Neoplasias , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Prostaglandina D2/biosíntesis , Prostaglandina D2/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Regulación hacia Arriba
2.
Artículo en Inglés | MEDLINE | ID: mdl-32789791

RESUMEN

The capacity of cells to organize complex biochemical reactions in intracellular space is a fundamental organizational principle of life. Key to this organization is the compartmentalization of the cytoplasm into distinct organelles, which is frequently achieved through intracellular membranes. Recent evidence, however, has added a new layer of flexibility to cellular compartmentalization. As such, in response to specific stimuli, liquid-liquid phase separations can lead to the rapid rearrangements of the cytoplasm to form membraneless organelles. Stress granules (SGs) are one such type of organelle that form specifically when cells are faced with stress stimuli, to aid cells in coping with stress. Inherently, altered SG formation has been linked to the pathogenesis of diseases associated with stress and inflammatory conditions, including cancer. Exciting discoveries have indicated an intimate link between SGs and tumorigenesis. Several pro-tumorigenic signaling molecules including the RAS oncogene, mTOR, and histone deacetylase 6 (HDAC6) have been shown to upregulate SG formation. Based on these studies, SGs have emerged as structures that can integrate oncogenic signaling and tumor-associated stress stimuli to enhance cancer cell fitness. In addition, growing evidence over the past decade suggests that SGs function not only to regulate the switch between survival and cell death, but also contribute to cancer cell proliferation, invasion, metastasis, and drug resistance. Although much remains to be learned about the role of SGs in tumorigenesis, these studies highlight SGs as a key regulatory hub in cancer and a promising therapeutic target.


Asunto(s)
Gránulos Citoplasmáticos , Neoplasias , Humanos , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/patología , Gránulos de Estrés , Citoplasma , Transducción de Señal , Neoplasias/metabolismo , Carcinogénesis/metabolismo , Carcinogénesis/patología
3.
Nature ; 497(7451): 633-7, 2013 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-23665962

RESUMEN

Macropinocytosis is a highly conserved endocytic process by which extracellular fluid and its contents are internalized into cells through large, heterogeneous vesicles known as macropinosomes. Oncogenic Ras proteins have been shown to stimulate macropinocytosis but the functional contribution of this uptake mechanism to the transformed phenotype remains unknown. Here we show that Ras-transformed cells use macropinocytosis to transport extracellular protein into the cell. The internalized protein undergoes proteolytic degradation, yielding amino acids including glutamine that can enter central carbon metabolism. Accordingly, the dependence of Ras-transformed cells on free extracellular glutamine for growth can be suppressed by the macropinocytic uptake of protein. Consistent with macropinocytosis representing an important route of nutrient uptake in tumours, its pharmacological inhibition compromises the growth of Ras-transformed pancreatic tumour xenografts. These results identify macropinocytosis as a mechanism by which cancer cells support their unique metabolic needs and point to the possible exploitation of this process in the design of anticancer therapies.


Asunto(s)
Aminoácidos/metabolismo , Transformación Celular Neoplásica , Proteína Oncogénica p21(ras)/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Pinocitosis , Animales , Transporte Biológico , Carbono/metabolismo , Línea Celular Transformada , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Femenino , Glutamina/metabolismo , Ratones , Ratones Desnudos , Células 3T3 NIH , Proteína Oncogénica p21(ras)/genética , Neoplasias Pancreáticas/genética , Proteolisis
4.
Cancer Discov ; 13(2): 260-262, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36744321

RESUMEN

SUMMARY: The first KRASG12D inhibitor, MRTX113, leads to regression in multiple mouse models of PDAC as a monotherapy. MRTX113 blocks cancer cell proliferation, induces cancer cell death, and promotes immune infiltration and activation. See related article by Kemp et al., p. 298 (6).


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ratones , Animales , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Ratones Transgénicos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proliferación Celular , Neoplasias Pancreáticas
5.
Trends Cancer ; 9(12): 995-1005, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37704502

RESUMEN

Cell stress is inherent to cancer and a key driver of tumorigenesis. Recent studies have proposed that cell stress promotes tumorigenesis through non-membranous organelles known as stress granules (SGs). While the biology of SGs is an emerging field, all studies to date point to the enhanced ability of cancer cells to form SGs compared with normal cells, a heightened dependence on SGs for survival under adverse conditions and for chemotherapy resistance, and the dependence of tumors on SGs for growth. Why cancer cells become dependent on SGs and how SGs promote tumorigenesis remain to be elucidated. Here, we attempt to provide a framework for answering these questions by framing SGs as a hormetic response to tumor-associated stress stimuli.


Asunto(s)
Neoplasias , Gránulos de Estrés , Humanos , Neoplasias/tratamiento farmacológico , Carcinogénesis
6.
Dis Model Mech ; 15(2)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35147163

RESUMEN

Cellular stress is known to function in synergistic cooperation with oncogenic mutations during tumorigenesis to drive cancer progression. Oncogenic RAS is a strong inducer of a variety of pro-tumorigenic cellular stresses, and also enhances the ability of cells to tolerate these stresses through multiple mechanisms. Many of these oncogenic, RAS-driven, stress-adaptive mechanisms have also been implicated in tolerance and resistance to chemotherapy and to therapies that target the RAS pathway. Understanding how oncogenic RAS shapes cellular stress adaptation and how this functions in drug resistance is of vital importance for identifying new therapeutic targets and therapeutic combinations to treat RAS-driven cancers.


Asunto(s)
Neoplasias , Carcinogénesis/genética , Genes ras , Humanos , Neoplasias/patología
7.
Cancer Discov ; 12(8): 1984-2005, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35674408

RESUMEN

Obesity is a global epidemic and a major predisposing factor for cancer. Increasing evidence shows that obesity-associated stress is a key driver of cancer risk and progression. Previous work has identified the phase-separation organelles, stress granules (SG), as mutant KRAS-dependent mediators of stress adaptation. However, the dependence of tumorigenesis on these organelles is unknown. Here, we establish a causal link between SGs and pancreatic ductal adenocarcinoma (PDAC). Importantly, we uncover that dependence on SGs is drastically heightened in obesity-associated PDAC. Furthermore, we identify a previously unknown regulator and component of SGs, namely, the serine/arginine protein kinase 2 (SRPK2), as a specific determinant of SG formation in obesity-associated PDAC. We show that SRPK2-mediated SG formation in obesity-associated PDAC is driven by hyperactivation of the IGF1/PI3K/mTOR/S6K1 pathway and that S6K1 inhibition selectively attenuates SGs and impairs obesity-associated PDAC development. SIGNIFICANCE: : We show that stress adaptation via the phase-separation organelles SGs mediates PDAC development. Moreover, preexisting stress conditions such as obesity are a driving force behind tumor SG dependence, and enhanced SG levels are key determinants and a chemopreventive target for obesity-associated PDAC. This article is highlighted in the In This Issue feature, p. 1825.


Asunto(s)
Carcinoma Ductal Pancreático , Obesidad , Neoplasias Pancreáticas , Proteínas Serina-Treonina Quinasas , Gránulos de Estrés , Carcinoma Ductal Pancreático/etiología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Humanos , Obesidad/complicaciones , Obesidad/genética , Obesidad/metabolismo , Neoplasias Pancreáticas/etiología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Gránulos de Estrés/genética , Gránulos de Estrés/metabolismo , Neoplasias Pancreáticas
8.
Methods Mol Biol ; 1882: 183-195, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30378055

RESUMEN

Stress granules are nonmembranous organelles that function as a stress-adaptation mechanism. We have recently shown that stress granules are mobilized by mutant KRAS pancreatic cancer cells under stress to enhance tumor fitness and survival. In this chapter, we outline a method for inducing, detecting, and quantifying stress granules in pancreatic cancer cells in vitro and in vivo. This method can be utilized to better understand the mechanisms driving stress granule formation and their role in pancreatic tumorigenesis.


Asunto(s)
Carcinogénesis/patología , Técnicas de Cultivo de Célula/métodos , Gránulos Citoplasmáticos/patología , Neoplasias Pancreáticas/patología , Estrés Fisiológico , Animales , Técnicas de Cultivo de Célula/instrumentación , Línea Celular Tumoral , Gránulos Citoplasmáticos/genética , Humanos , Procesamiento de Imagen Asistido por Computador/instrumentación , Procesamiento de Imagen Asistido por Computador/métodos , Ratones , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Páncreas/patología , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética
9.
Oncogene ; 24(13): 2155-65, 2005 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-15735747

RESUMEN

The G-protein alpha subunit, alpha(13), regulates cell growth and differentiation through the monomeric Rho GTPase. Alpha(13) activates Rho through direct stimulation of the guanine nucleotide exchange factor p115RhoGEF, which contains a regulator of G-protein signaling homology domain (RH) in its N-terminus. Through its RH domain, p115RhoGEF also functions as a GAP for G alpha(13). The mechanism for the G alpha(13)/p115RhoGEF interaction is not well understood. Here, we determined specific alpha(13) residues important for its interaction with p115RhoGEF. GST-pulldowns and co-immunoprecipitation assays revealed that individually mutating alpha(13) residues Lys204, Glu229, or Arg232 to opposite charge residues disrupts the interaction of activated alpha(13) with the RH domain of p115RhoGEF or full-length p115RhoGEF. We further demonstrate that mutation of Glu229, and to a lesser extent Lys204 or Arg232, disrupts the ability of activated alpha(13) to induce the recruitment of p115RhoGEF to the plasma membrane (PM) and to activate Rho-mediated serum response element-luciferase gene transcription. Interestingly, an alpha(13) mutant where a conserved Gly was mutated to a Ser (G205S) retained its ability to bind to p115RhoGEF, induce p115RhoGEF recruitment to the PM, and activate Rho-dependent signaling, even though identical Gly to Ser mutations in other alpha disrupt their interaction with regulator of G-protein signaling (RGS) proteins. These results demonstrate that, whereas several features of a typical alpha/RGS interaction are preserved in the alpha(13)/p115RhoGEF interaction, there are also significant differences.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP G12-G13/genética , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Sustitución de Aminoácidos , Arginina , Sitios de Unión , Línea Celular , Clonación Molecular , Ácido Glutámico , Humanos , Riñón , Lisina , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes de Fusión/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho , Transfección
10.
PLoS One ; 11(4): e0153623, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27093539

RESUMEN

Hypoxia in tumors signifies resistance to therapy. Despite a wealth of tumor histology data, including anti-pimonidazole staining, no current methods use these data to induce a quantitative characterization of chronic tumor hypoxia in time and space. We use image-processing algorithms to develop a set of candidate image features that can formulate just such a quantitative description of xenographed colorectal chronic tumor hypoxia. Two features in particular give low-variance measures of chronic hypoxia near a vessel: intensity sampling that extends radially away from approximated blood vessel centroids, and multithresholding to segment tumor tissue into normal, hypoxic, and necrotic regions. From these features we derive a spatiotemporal logical expression whose truth value depends on its predicate clauses that are grounded in this histological evidence. As an alternative to the spatiotemporal logical formulation, we also propose a way to formulate a linear regression function that uses all of the image features to learn what chronic hypoxia looks like, and then gives a quantitative similarity score once it is trained on a set of histology images.


Asunto(s)
Neoplasias del Colon/patología , Hipoxia/patología , Algoritmos , Animales , Línea Celular Tumoral , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Ratones , Ratones Desnudos , Nitroimidazoles/administración & dosificación
11.
Cell Signal ; 28(1): 43-52, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26483157

RESUMEN

Rho GTPases are integral to the regulation of actin cytoskeleton-dependent processes, including mitosis. Rho and leukemia-associated Rho guanine-nucleotide exchange factor (LARG), also known as ARHGEF12, are involved in mitosis as well as diseases such as cancer and heart disease. Since LARG has a role in mitosis and diverse signaling functions beyond mitosis, it is important to understand the regulation of the protein through modifications such as phosphorylation. Here we report that LARG undergoes a mitotic-dependent and cyclin-dependent kinase 1 (Cdk1) inhibitor-sensitive phosphorylation. Additionally, LARG is phosphorylated at the onset of mitosis and dephosphorylated as cells exit mitosis, concomitant with Cdk1 activity. Furthermore, using an in vitro kinase assay, we show that LARG can be directly phosphorylated by Cdk1. Through expression of phosphonull mutants that contain non-phosphorylatable alanine mutations at potential Cdk1 S/TP sites, we demonstrate that LARG phosphorylation occurs in both termini. Using phosphospecific antibodies, we confirm that two sites, serine 190 and serine 1176, are phosphorylated during mitosis in a Cdk1-dependent manner. In addition, these phosphospecific antibodies show phosphorylated LARG at specific mitotic locations, namely the mitotic organizing centers and flanking the midbody. Lastly, RhoA activity assays reveal that phosphonull LARG is more active in cells than phosphomimetic LARG. Our data thus identifies LARG as a phosphoregulated RhoGEF during mitosis.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Leucemia/metabolismo , Mitosis/fisiología , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Citoesqueleto de Actina/metabolismo , Células HeLa , Humanos , Fosforilación , Factores de Intercambio de Guanina Nucleótido Rho/genética , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
12.
Clin Cancer Res ; 21(6): 1243-7, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25424849

RESUMEN

Of the genes mutated in cancer, RAS remains the most elusive to target. Recent technological advances and discoveries have greatly expanded our knowledge of the biology of oncogenic Ras and its role in cancer. As such, it has become apparent that a property that intimately accompanies RAS-driven tumorigenesis is the dependence of RAS-mutant cells on a number of nononcogenic signaling pathways. These dependencies arise as a means of adaptation to Ras-driven intracellular stresses and represent unique vulnerabilities of mutant RAS cancers. A number of studies have highlighted the dependence of mutant RAS cancers on the DNA damage response and identified the molecular pathways that mediate this process, including signaling from wild-type Ras isoforms, ATR/Chk1, and DNA damage repair pathways. Here, we review these findings, and we discuss the combinatorial use of DNA-damaging chemotherapy with blockade of wild-type H- and N-Ras signaling by farnesyltransferase inhibitors, Chk1 inhibitors, or small-molecule targeting DNA damage repair as potential strategies through which the dependence of RAS cancers on the DNA damage response can be harnessed for therapeutic intervention.


Asunto(s)
Reparación del ADN/genética , Neoplasias/genética , Proteínas Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Antineoplásicos/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/genética , Transformación Celular Neoplásica/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Daño del ADN/genética , Farnesiltransferasa/antagonistas & inhibidores , Humanos , Neoplasias/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal/genética
13.
Cancer Res ; 75(3): 544-53, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25644265

RESUMEN

Glucose and amino acids are key nutrients supporting cell growth. Amino acids are imported as monomers, but an alternative route induced by oncogenic KRAS involves uptake of extracellular proteins via macropinocytosis and subsequent lysosomal degradation of these proteins as a source of amino acids. In this study, we examined the metabolism of pancreatic ductal adenocarcinoma (PDAC), a poorly vascularized lethal KRAS-driven malignancy. Metabolomic comparisons of human PDAC and benign adjacent tissue revealed that tumor tissue was low in glucose, upper glycolytic intermediates, creatine phosphate, and the amino acids glutamine and serine, two major metabolic substrates. Surprisingly, PDAC accumulated essential amino acids. Such accumulation could arise from extracellular proteins being degraded through macropinocytosis in quantities necessary to meet glutamine requirements, which in turn produces excess of most other amino acids. Consistent with this hypothesis, active macropinocytosis is observed in primary human PDAC specimens. Moreover, in the presence of physiologic albumin, we found that cultured murine PDAC cells grow indefinitely in media lacking single essential amino acids and replicate once in the absence of free amino acids. Growth under these conditions was characterized by simultaneous glutamine depletion and essential amino acid accumulation. Overall, our findings argue that the scavenging of extracellular proteins is an important mode of nutrient uptake in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas/metabolismo , Albúminas/química , Aminoácidos/química , Animales , Carcinoma Ductal Pancreático/genética , Proliferación Celular , Cromatografía Liquida , Glucosa/química , Glutamina/química , Humanos , Espectrometría de Masas , Ratones , Pinocitosis , Serina/química , Transducción de Señal/genética , Células Madre/citología , Células Tumorales Cultivadas
14.
Cancer Cell ; 25(2): 243-56, 2014 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24525237

RESUMEN

Mutations in KRAS are prevalent in human cancers and universally predictive of resistance to anticancer therapeutics. Although it is widely accepted that acquisition of an activating mutation endows RAS genes with functional autonomy, recent studies suggest that the wild-type forms of Ras may contribute to mutant Ras-driven tumorigenesis. Here, we show that downregulation of wild-type H-Ras or N-Ras in mutant K-Ras cancer cells leads to hyperactivation of the Erk/p90RSK and PI3K/Akt pathways and, consequently, the phosphorylation of Chk1 at an inhibitory site, Ser 280. The resulting inhibition of ATR/Chk1 signaling abrogates the activation of the G2 DNA damage checkpoint and confers specific sensitization of mutant K-Ras cancer cells to DNA damage chemotherapeutic agents in vitro and in vivo.


Asunto(s)
Transformación Celular Neoplásica/patología , Daño del ADN/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas ras/genética , Animales , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Daño del ADN/efectos de los fármacos , Resistencia a Antineoplásicos , Femenino , Citometría de Flujo , GTP Fosfohidrolasas/antagonistas & inhibidores , GTP Fosfohidrolasas/genética , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones , Ratones Desnudos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Mutación/genética , Neoplasias/genética , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Proteínas ras/metabolismo
15.
Mol Biol Cell ; 24(18): 2785-94, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23885121

RESUMEN

Proper completion of mitosis requires the concerted effort of multiple RhoGEFs. Here we show that leukemia-associated RhoGEF (LARG), a RhoA-specific RGS-RhoGEF, is required for abscission, the final stage of cytokinesis, in which the intercellular membrane is cleaved between daughter cells. LARG colocalizes with α-tubulin at the spindle poles before localizing to the central spindle. During cytokinesis, LARG is condensed in the midbody, where it colocalizes with RhoA. HeLa cells depleted of LARG display apoptosis during cytokinesis with unresolved intercellular bridges, and rescue experiments show that expression of small interfering RNA-resistant LARG prevents this apoptosis. Moreover, live cell imaging of LARG-depleted cells reveals greatly delayed fission kinetics in abscission in which a population of cells with persistent bridges undergoes apoptosis; however, the delayed fission kinetics is rescued by Aurora-B inhibition. The formation of a Flemming body and thinning of microtubules in the intercellular bridge of cells depleted of LARG is consistent with a defect in late cytokinesis, just before the abscission event. In contrast to studies of other RhoGEFs, particularly Ect2 and GEF-H1, LARG depletion does not result in cytokinetic furrow regression nor does it affect internal mitotic timing. These results show that LARG is a novel and temporally distinct RhoGEF required for completion of abscission.


Asunto(s)
Citocinesis , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Apoptosis , Aurora Quinasa B/metabolismo , Células HeLa , Humanos , Cinética , Mitosis , Mutación/genética , Unión Proteica , ARN Interferente Pequeño/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/química , Factores de Intercambio de Guanina Nucleótido Rho/genética , Relación Estructura-Actividad , Tirosina/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
16.
Nat Rev Cancer ; 11(11): 761-74, 2011 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-21993244

RESUMEN

RAS proteins are essential components of signalling pathways that emanate from cell surface receptors. Oncogenic activation of these proteins owing to missense mutations is frequently detected in several types of cancer. A wealth of biochemical and genetic studies indicates that RAS proteins control a complex molecular circuitry that consists of a wide array of interconnecting pathways. In this Review, we describe how RAS oncogenes exploit their extensive signalling reach to affect multiple cellular processes that drive tumorigenesis.


Asunto(s)
Transformación Celular Neoplásica/genética , Genes ras/genética , Mutación Missense , Animales , Apoptosis/genética , Proliferación Celular , Transformación Celular Neoplásica/inmunología , Transformación Celular Neoplásica/metabolismo , Humanos , Metástasis de la Neoplasia
17.
Cancer Cell ; 16(2): 85-6, 2009 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-19647217

RESUMEN

Squamous cell carcinoma (SCC) is the second most common form of nonmelanoma skin cancer. In this issue of Cancer Cell, Ehrenreiter et al. unveil a critical role for the Raf-1/Rok-alpha interaction in the pathogenesis of SCCs, thus paving the way for the development of therapeutic modalities to treat this malignancy.


Asunto(s)
Carcinoma de Células Escamosas/enzimología , Proteínas Proto-Oncogénicas c-raf/fisiología , Neoplasias Cutáneas/enzimología , Quinasas Asociadas a rho/metabolismo , Animales , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Diferenciación Celular , Proliferación Celular , Queratinocitos/enzimología , Queratinocitos/patología , Ratones , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas Proto-Oncogénicas c-raf/metabolismo , Transducción de Señal , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología
18.
Mol Pharmacol ; 72(4): 993-1002, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17609419

RESUMEN

The rgsRhoGEFs comprise a subfamily of three guanine nucleotide exchange factors, which function in linking heterotrimeric G-proteins to the monomeric RhoGTPase. Here, we reveal the novel finding that oligomerization of leukemia-associated RhoGEF (LARG) functions to prevent nucleocytoplasmic shuttling and to retain LARG in the cytoplasm. We establish that oligomerization is mediated by a predicted coiled-coil sequence (amino acids 1507-1520) in the extreme C terminus of LARG and that substitution of isoleucines 1507/1510 with alanines disrupts homo-oligomerization and leads to nucleocytoplasmic shuttling via the CRM1 nuclear transport pathway. In addition, we demonstrate that induced dimerization of an otherwise nuclear monomeric LARG mutant promotes cytoplasmic localization. Furthermore, we establish that nuclear import of monomeric LARG is mediated by the nuclear localization sequence (29)PTDKKQK(35) in the extreme N terminus. We propose that nucleocytoplasmic shuttling provides a mechanism for spatially regulating the activity of LARG toward its cytoplasmic targets and potentially new nuclear targets.


Asunto(s)
Biopolímeros/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Biopolímeros/química , Células COS , Chlorocebus aethiops , Cartilla de ADN , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Mutagénesis Sitio-Dirigida , Señales de Localización Nuclear , Conformación Proteica , Transporte de Proteínas , Factores de Intercambio de Guanina Nucleótido Rho
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA