Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Chem ; 9: 688127, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34395377

RESUMEN

Superabsorbent polymer (SAP) is a kind of functional macromolecule with super-high water absorption and retention properties, which attracts extensive research and has wide application, especially in the areas of hygiene and agriculture. With reference to the Web of Science database, the SAP research literature from 2000 to 2019 is reviewed both quantitatively and qualitatively. By examining research hotspots, top research clusters, the most influential works, the representative frontier literature, and key emerging research trends, a visual panorama of the continuously and significantly increasing SAP research over the past 2 decades was presented, and issues behind the sharp increase in the literature were discovered. The findings are as follows. The top ten keywords/hotspots headed by hydrogel highlight the academic attention on SAP properties and composites. The top ten research themes headed by clay-based composites which boast the longest duration and the strongest impact have revealed the academic preference for application rather than theoretical study. Academically influential scholars and research studies have been acknowledged, and the Wu group was at the forefront of the research; however, more statistically significant works have been less detected in the last 10 years despite the sharper increase in publications. Hydrogel, internal curing, and aerogel are both current advances and future directions.

2.
IEEE Trans Neural Syst Rehabil Eng ; 14(1): 38-45, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16562630

RESUMEN

Muscle contractions induced by functional electrical stimulation (FES) tend to result in rapid muscle fatigue, which greatly limits activities such as FES-assisted standing and walking. It was hypothesized that muscle fatigue caused by FES could be reduced by randomly modulating parameters of the electrical stimulus. Seven paraplegic subjects participated in this study. While subjects were seated, FES was applied to quadriceps and tibialis anterior muscles bilaterally using surface electrodes. The isometric force was measured, and the time for the force to drop by 3 dB (fatigue time) and the normalized force-time integral (FTI) were determined. Four different modes of FES were applied in random order: constant stimulation, randomized frequency (mean 40 Hz), randomized current amplitude, and randomized pulsewidth (mean 250 micros). In randomized trials, stimulation parameters were stochastically modulated every 100 ms in a range of +/-15% using a uniform probability distribution. There was no significant difference between the fatigue time measurements for the four modes of stimulation. There was also no significant difference in the FTI measurements. Therefore, our particular method of stochastic modulation of the stimulation parameters, which involved moderate (15%) variations updated every 100 ms and centered around 40 Hz, appeared to have no effect on muscle fatigue. There was a strong correlation between maximum force measurements and stimulation order, which was not apparent in the fatigue time or FTI measurements. It was concluded that a 10-min rest period between stimulation trials was insufficient to allow full recovery of muscle strength.


Asunto(s)
Estimulación Eléctrica , Fatiga Muscular/fisiología , Músculo Esquelético/fisiología , Potenciales de Acción/fisiología , Adulto , Algoritmos , Axones/fisiología , Interpretación Estadística de Datos , Humanos , Contracción Isométrica , Músculo Esquelético/inervación , Fibras Nerviosas/fisiología , Fibras Nerviosas/ultraestructura , Neurotransmisores/metabolismo , Distribución Aleatoria , Sinapsis/fisiología
3.
Artif Organs ; 29(6): 453-8, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15926981

RESUMEN

A major limitation of many functional electrical stimulation (FES) applications is that muscles tend to fatigue very rapidly. It was hypothesized that FES-induced muscle fatigue could be reduced by randomly modulating the pulse frequency, amplitude, and pulse width in a range of +/-15%. Seven subjects with spinal-cord injuries participated in this study. FES was applied to quadriceps and tibialis anterior muscles using surface electrodes. Isometric force was measured, and the time for the force to drop by 3 dB (fatigue time) was compared between trials. Four different modes of FES were applied in random order: constant stimulation, randomized frequency, randomized amplitude, and randomized pulse width. There was no significant difference between the fatigue-time measurements for the four modes of stimulation (P=0.329). Therefore, random modulation appeared to have no effect. Based on an observed correlation between maximum force measurements and trial order, we concluded that having 10-min rest periods between trials was insufficient.


Asunto(s)
Estimulación Eléctrica/métodos , Fatiga Muscular/fisiología , Músculo Esquelético/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/rehabilitación , Adulto , Análisis de Varianza , Femenino , Humanos , Contracción Isométrica/fisiología , Pierna , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA