RESUMEN
We present an apparatus for detection of cyclotron radiation yielding a frequency-based ß^{±} kinetic energy determination in the 5 keV to 2.1 MeV range, characteristic of nuclear ß decays. The cyclotron frequency of the radiating ß particles in a magnetic field is used to determine the ß energy precisely. Our work establishes the foundation to apply the cyclotron radiation emission spectroscopy (CRES) technique, developed by the Project 8 Collaboration, far beyond the 18-keV tritium endpoint region. We report initial measurements of ß^{-}'s from ^{6}He and ß^{+}'s from ^{19}Ne decays to demonstrate the broadband response of our detection system and assess potential systematic uncertainties for ß spectroscopy over the full (MeV) energy range. To our knowledge, this is the first direct observation of cyclotron radiation from individual highly relativistic ß's in a waveguide. This work establishes the application of CRES to a variety of nuclei, opening its reach to searches for new physics beyond the TeV scale via precision ß-decay measurements.
RESUMEN
We report the first precise measurement of a ß-recoil correlation from a radioactive noble gas (^{6}He) confined via a magneto-optical trap. The measurement is motivated by the search for exotic tensor-type contributions to the charged weak current. Interpreted as tensor currents with right-handed neutrinos, the measurements yield |C_{T}/C_{A}|^{2}≤0.022 (90% confidence limit, C.L.). On the other hand, for left-handed neutrinos the limits are 0.007
RESUMEN
This corrects the article DOI: 10.1103/PhysRevLett.116.161601.
RESUMEN
This Letter describes the results of the most recent measurement of the permanent electric dipole moment (EDM) of neutral ^{199}Hg atoms. Fused silica vapor cells containing enriched ^{199}Hg are arranged in a stack in a common magnetic field. Optical pumping is used to spin polarize the atoms orthogonal to the applied magnetic field, and the Faraday rotation of near-resonant light is observed to determine an electric-field-induced perturbation to the Larmor precession frequency. Our results for this frequency shift are consistent with zero; we find the corresponding ^{199}Hg EDM d_{Hg}=(-2.20±2.75_{stat}±1.48_{syst})×10^{-30}e cm. We use this result to place a new upper limit on the ^{199}Hg EDM |d_{Hg}|<7.4×10^{-30}e cm (95% C.L.), improving our previous limit by a factor of 4. We also discuss the implications of this result for various CP-violating observables as they relate to theories of physics beyond the standard model.