Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Rev Sci Instrum ; 92(6): 063102, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34243502

RESUMEN

A simple combination of the Planck blackbody emission law, optical filters, and digital image processing is demonstrated to enable most commercial color cameras (still and video) to be used as an imaging pyrometer for flames and explosions. The hardware and data processing described take advantage of the color filter array (CFA) that is deposited on the surface of the light sensor array present in most digital color cameras. In this work, a triple-pass optical filter incorporated into the camera lens allows light in three 10-nm wide bandpass regions to reach the CFA/light sensor array. These bandpass regions are centered over the maxima in the blue, green, and red transmission regions of the CFA, minimizing the spectral overlap of these regions normally present. A computer algorithm is used to retrieve the blue, green, and red image matrices from camera memory and correct for remaining spectral overlap. A second algorithm calibrates the corrected intensities to a gray body emitter of known temperature, producing a color intensity correction factor for the camera/filter system. The Wien approximation to the Planck blackbody emission law is used to construct temperature images from the three color (blue, green, red) matrices. A short pass filter set eliminates light of wavelengths longer than 750 nm, providing reasonable accuracy (±10%) for temperatures between 1200 and 6000 K. The effectiveness of this system is demonstrated by measuring the temperature of several systems for which the temperature is known.

2.
ACS Appl Bio Mater ; 4(7): 5405-5415, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35006756

RESUMEN

Chronic nonhealing wounds are a growing socioeconomic problem that affects more than 6 million people annually solely in the United States. These wounds are colonized by bacteria that often develop into biofilms that act as a physical and chemical barrier to therapeutics and tissue oxygenation leading to chronic inflammation and tissue hypoxia. Although wound debridement and vigorous mechanical abrasion techniques are often used by clinical professionals to manage and remove biofilms from wound surfaces, such methods are highly nonselective and painful. In this study, we have developed a flexible polymer composite microneedle array that can overcome the physicochemical barriers (i.e., bacterial biofilm) present in chronic nonhealing wounds and codeliver oxygen and bactericidal agents. The polymeric microneedles are made by using a facile UV polymerization process of polyvinylpyrrolidone and calcium peroxide onto a flexible polyethylene terephthalate substrate for conformable attachment onto different locations of the human body surface. The microneedles effectively elevate the oxygen levels from 8 to 12 ppm once dissolved over the course of 2 h while also providing strong bactericidal effects on both liquid and biofilm bacteria cultures of both Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacterial strains commonly found in dermal wounds. Furthermore, the results from the ex vivo assay on a porcine wound model indicated successful insertion of the microneedles into the tissue while also providing effective bactericidal properties against both Gram-positive and Gram-negative within the complex tissue matrix. Additionally, the microneedles demonstrate high levels of cytocompatibility with less than 10% of apoptosis throughout 6 days of continuous exposure to human dermal fibroblast cells. The demonstrated flexible microneedle array can provide a better approach for increasing the effectiveness of topical tissue oxygenation as well as the treatment of infected wounds with intrinsically antibiotic resistant biofilms.


Asunto(s)
Biopelículas , Infección de Heridas , Animales , Antibacterianos/farmacología , Bacterias , Humanos , Oxígeno/farmacología , Pseudomonas aeruginosa , Staphylococcus aureus , Porcinos , Infección de Heridas/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA