Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 108(9): 1611-1630, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34343493

RESUMEN

Genome-wide association studies (GWASs) have identified a melanoma-associated locus on chromosome band 7p21.1 with rs117132860 as the lead SNP and a secondary independent signal marked by rs73069846. rs117132860 is also associated with tanning ability and cutaneous squamous cell carcinoma (cSCC). Because ultraviolet radiation (UVR) is a key environmental exposure for all three traits, we investigated the mechanisms by which this locus contributes to melanoma risk, focusing on cellular response to UVR. Fine-mapping of melanoma GWASs identified four independent sets of candidate causal variants. A GWAS region-focused Capture-C study of primary melanocytes identified physical interactions between two causal sets and the promoter of the aryl hydrocarbon receptor (AHR). Subsequent chromatin state annotation, eQTL, and luciferase assays identified rs117132860 as a functional variant and reinforced AHR as a likely causal gene. Because AHR plays critical roles in cellular response to dioxin and UVR, we explored links between this SNP and AHR expression after both 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and ultraviolet B (UVB) exposure. Allele-specific AHR binding to rs117132860-G was enhanced following both, consistent with predicted weakened AHR binding to the risk/poor-tanning rs117132860-A allele, and allele-preferential AHR expression driven from the protective rs117132860-G allele was observed following UVB exposure. Small deletions surrounding rs117132860 introduced via CRISPR abrogates AHR binding, reduces melanocyte cell growth, and prolongs growth arrest following UVB exposure. These data suggest AHR is a melanoma susceptibility gene at the 7p21.1 risk locus and rs117132860 is a functional variant within a UVB-responsive element, leading to allelic AHR expression and altering melanocyte growth phenotypes upon exposure.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Carcinoma de Células Escamosas/genética , Cromosomas Humanos Par 7 , Sitios Genéticos , Melanocitos/metabolismo , Melanoma/genética , Receptores de Hidrocarburo de Aril/genética , Neoplasias Cutáneas/genética , Alelos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Cromatina/química , Cromatina/metabolismo , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Melanocitos/efectos de los fármacos , Melanocitos/patología , Melanocitos/efectos de la radiación , Melanoma/metabolismo , Melanoma/patología , Dibenzodioxinas Policloradas/toxicidad , Polimorfismo de Nucleótido Simple , Cultivo Primario de Células , Regiones Promotoras Genéticas , Receptores de Hidrocarburo de Aril/metabolismo , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Baño de Sol , Rayos Ultravioleta/efectos adversos
2.
Diabetologia ; 66(9): 1589-1600, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37439792

RESUMEN

Iterative advances in understanding of the genetics of type 1 diabetes have identified >70 genetic regions associated with risk of the disease, including strong associations across the HLA class II region that account for >50% of heritability. The increased availability of genetic data combined with the decreased costs of generating these data, have facilitated the development of polygenic scores that aggregate risk variants from associated loci into a single number: either a genetic risk score (GRS) or a polygenic risk score (PRS). PRSs incorporate the risk of many possibly correlated variants from across the genome, even if they do not reach genome-wide significance, whereas GRSs estimate the cumulative contribution of a smaller subset of genetic variants that reach genome-wide significance. Type 1 diabetes GRSs have utility in diabetes classification, aiding discrimination between type 1 diabetes, type 2 diabetes and MODY. Type 1 diabetes GRSs are also being used in newborn screening studies to identify infants at risk of future presentation of the disease. Most early studies of type 1 diabetes genetics have been conducted in European ancestry populations, but, to develop accurate GRSs across diverse ancestries, large case-control cohorts from non-European populations are still needed. The current barriers to GRS implementation within healthcare are mainly related to a lack of guidance and knowledge on integration with other biomarkers and clinical variables. Once these limitations are addressed, there is huge potential for 'test and treat' approaches to be used to tailor care for individuals with type 1 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Recién Nacido , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/diagnóstico , Predisposición Genética a la Enfermedad/genética , Factores de Riesgo , Biomarcadores , Estudio de Asociación del Genoma Completo
3.
Rev Endocr Metab Disord ; 24(5): 775-793, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37032403

RESUMEN

Obesity is a common complex trait that elevates the risk for various diseases, including type 2 diabetes and cardiovascular disease. A combination of environmental and genetic factors influences the pathogenesis of obesity. Advances in genomic technologies have driven the identification of multiple genetic loci associated with this disease, ranging from studying severe onset cases to investigating common multifactorial polygenic forms. Additionally, findings from epigenetic analyses of modifications to the genome that do not involve changes to the underlying DNA sequence have emerged as key signatures in the development of obesity. Such modifications can mediate the effects of environmental factors, including diet and lifestyle, on gene expression and clinical presentation. This review outlines what is known about the genetic and epigenetic contributors to obesity susceptibility, along with the albeit limited therapeutic options currently available. Furthermore, we delineate the potential mechanisms of actions through which epigenetic changes can mediate environmental influences and the related opportunities they present for future interventions in the management of obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Obesidad/genética , Obesidad/metabolismo , Epigénesis Genética/genética , Epigenómica , Estudio de Asociación del Genoma Completo
4.
Ann Hum Biol ; 50(1): 258-266, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37343163

RESUMEN

CONTEXT: Like other complex phenotypes, human height reflects a combination of environmental and genetic factors, but is notable for being exceptionally easy to measure. Height has therefore been commonly used to make observations later generalised to other phenotypes though the appropriateness of such generalisations is not always considered. OBJECTIVES: We aimed to assess height's suitability as a model for other complex phenotypes and review recent advances in height genetics with regard to their implications for complex phenotypes more broadly. METHODS: We conducted a comprehensive literature search in PubMed and Google Scholar for articles relevant to the genetics of height and its comparatibility to other phenotypes. RESULTS: Height is broadly similar to other phenotypes apart from its high heritability and ease of measurment. Recent genome-wide association studies (GWAS) have identified over 12,000 independent signals associated with height and saturated height's common single nucleotide polymorphism based heritability of height within a subset of the genome in individuals similar to European reference populations. CONCLUSIONS: Given the similarity of height to other complex traits, the saturation of GWAS's ability to discover additional height-associated variants signals potential limitations to the omnigenic model of complex-phenotype inheritance, indicating the likely future power of polygenic scores and risk scores, and highlights the increasing need for large-scale variant-to-gene mapping efforts.


Asunto(s)
Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Humanos , Fenotipo , Genoma Humano , Polimorfismo de Nucleótido Simple
5.
Am J Hum Genet ; 105(1): 89-107, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31204013

RESUMEN

Deciphering the impact of genetic variation on gene regulation is fundamental to understanding common, complex human diseases. Although histone modifications are important markers of gene regulatory elements of the genome, any specific histone modification has not been assayed in more than a few individuals in the human liver. As a result, the effects of genetic variation on histone modification states in the liver are poorly understood. Here, we generate the most comprehensive genome-wide dataset of two epigenetic marks, H3K4me3 and H3K27ac, and annotate thousands of putative regulatory elements in the human liver. We integrate these findings with genome-wide gene expression data collected from the same human liver tissues and high-resolution promoter-focused chromatin interaction maps collected from human liver-derived HepG2 cells. We demonstrate widespread functional consequences of natural genetic variation on putative regulatory element activity and gene expression levels. Leveraging these extensive datasets, we fine-map a total of 74 GWAS loci that have been associated with at least one complex phenotype. Our results reveal a repertoire of genes and regulatory mechanisms governing complex disease development and further the basic understanding of genetic and epigenetic regulation of gene expression in the human liver tissue.


Asunto(s)
Cromatina/genética , Mapeo Cromosómico/métodos , Epigénesis Genética , Hígado/patología , Herencia Multifactorial/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Adolescente , Adulto , Anciano , Niño , Cromatina/metabolismo , Femenino , Estudios de Asociación Genética , Células Hep G2 , Histonas/genética , Humanos , Hígado/metabolismo , Masculino , Persona de Mediana Edad , Fenotipo , Regiones Promotoras Genéticas , Estudios Prospectivos , Secuencias Reguladoras de Ácidos Nucleicos , Adulto Joven
6.
BMC Med Res Methodol ; 22(1): 68, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35291947

RESUMEN

BACKGROUND: Longitudinal data analysis can improve our understanding of the influences on health trajectories across the life-course. There are a variety of statistical models which can be used, and their fitting and interpretation can be complex, particularly where there is a nonlinear trajectory. Our aim was to provide an accessible guide along with applied examples to using four sophisticated modelling procedures for describing nonlinear growth trajectories. METHODS: This expository paper provides an illustrative guide to summarising nonlinear growth trajectories for repeatedly measured continuous outcomes using (i) linear spline and (ii) natural cubic spline linear mixed-effects (LME) models, (iii) Super Imposition by Translation and Rotation (SITAR) nonlinear mixed effects models, and (iv) latent trajectory models. The underlying model for each approach, their similarities and differences, and their advantages and disadvantages are described. Their application and correct interpretation of their results is illustrated by analysing repeated bone mass measures to characterise bone growth patterns and their sex differences in three cohort studies from the UK, USA, and Canada comprising 8500 individuals and 37,000 measurements from ages 5-40 years. Recommendations for choosing a modelling approach are provided along with a discussion and signposting on further modelling extensions for analysing trajectory exposures and outcomes, and multiple cohorts. RESULTS: Linear and natural cubic spline LME models and SITAR provided similar summary of the mean bone growth trajectory and growth velocity, and the sex differences in growth patterns. Growth velocity (in grams/year) peaked during adolescence, and peaked earlier in females than males e.g., mean age at peak bone mineral content accrual from multicohort SITAR models was 12.2 years in females and 13.9 years in males. Latent trajectory models (with trajectory shapes estimated using a natural cubic spline) identified up to four subgroups of individuals with distinct trajectories throughout adolescence. CONCLUSIONS: LME models with linear and natural cubic splines, SITAR, and latent trajectory models are useful for describing nonlinear growth trajectories, and these methods can be adapted for other complex traits. Choice of method depends on the research aims, complexity of the trajectory, and available data. Scripts and synthetic datasets are provided for readers to replicate trajectory modelling and visualisation using the R statistical computing software.


Asunto(s)
Densidad Ósea , Modelos Estadísticos , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Modelos Lineales , Masculino , Rotación , Adulto Joven
7.
J Immunol ; 204(5): 1334-1344, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31953354

RESUMEN

The IL1A and IL1B genes lie in close proximity on chromosome 2 near the gene for their natural inhibitor, IL1RN Despite diverse functions, they are all three inducible through TLR4 signaling but with distinct kinetics. This study analyzed transcriptional induction kinetics, chromosome looping, and enhancer RNA production to understand the distinct regulation of these three genes in human cells. IL1A, IL1B, and IL1RN were rapidly induced after stimulation with LPS; however, IL1B mRNA production was less inhibitable by iBET151, suggesting it does not use pause-release regulation. Surprisingly, chromatin looping contacts between IL1A and IL1B were highly intermingled, although those of IL1RN were distinct, and we focused on comparing IL1A and IL1B transcriptional pathways. Our studies demonstrated that enhancer RNAs were produced from a subset of the regulatory regions, that they were critical for production of the mRNAs, and that they bound a diverse array of RNA binding proteins, including p300 but not CBP. We, furthermore, demonstrated that recruitment of p300 was dependent on MAPKs. Integrator is another RNA binding protein recruited to the promoters and enhancers, and its recruitment was more dependent on NF-κB than MAPKs. We found that integrator and NELF, an RNA polymerase II pausing protein, were associated with RNA in a manner that facilitated interaction. We conclude that IL1A and IL1B share many regulatory contacts, signaling pathways, and interactions with enhancer RNAs. A complex of protein interactions with enhancer RNAs emphasize the role of enhancer RNAs and the overall structural aspects of transcriptional regulation.


Asunto(s)
Proteína p300 Asociada a E1A/inmunología , Proteína Antagonista del Receptor de Interleucina 1/inmunología , Interleucina-1alfa/inmunología , Interleucina-1beta/inmunología , Lipopolisacáridos/farmacología , Monocitos/inmunología , Proteínas de Unión al ARN/inmunología , Transcripción Genética , Línea Celular , Proteína p300 Asociada a E1A/genética , Humanos , Proteína Antagonista del Receptor de Interleucina 1/genética , Interleucina-1alfa/genética , Interleucina-1beta/genética , Proteínas de Unión al ARN/genética , Transcripción Genética/efectos de los fármacos , Transcripción Genética/inmunología
8.
Alzheimers Dement ; 18(10): 1930-1942, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34978147

RESUMEN

We previously demonstrated that in Alzheimer's disease (AD) patients, European apolipoprotein E (APOE) ε4 carriers express significantly more APOE ε4 in their brains than African AD carriers. We examined single nucleotide polymorphisms near APOE with significant frequency differences between African and European/Japanese APOE ε4 haplotypes that could contribute to this difference in expression through regulation. Two enhancer massively parallel reporter assay (MPRA) approaches were performed, supplemented with single fragment reporter assays. We used Capture C analyses to support interactions with the APOE promoter. Introns within TOMM40 showed increased enhancer activity in the European/Japanese versus African haplotypes in astrocytes and microglia. This region overlaps with APOE promoter interactions as assessed by Capture C analysis. Single variant analyses pinpoints rs2075650/rs157581, and rs59007384 as functionally different on these haplotypes. Identification of the mechanisms for differential regulatory function for APOE expression between African and European/Japanese haplotypes could lead to therapeutic targets for APOE ε4 carriers.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Humanos , Alelos , Enfermedad de Alzheimer/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Población Negra/genética , Genotipo , Haplotipos , Polimorfismo de Nucleótido Simple/genética
9.
Hum Genet ; 140(10): 1441-1448, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34405268

RESUMEN

Promoter-focused chromatin conformation techniques directly detect interactions between gene promoters and distal genomic sequences, providing structural information relevant to gene regulation without the excessive non-genic architectural data generated by full-scale Hi-C. 3D promoter 'interactome' maps are crucial for understanding how epigenomic features such as histone modifications and open chromatin, or genetic variants identified in genome-wide association studies (GWAS), contribute to biological function. However, variation in sensitivity between such promoter-focused methods, principally due to restriction enzyme selection, has not been systematically assessed. Here, we performed a head-to-head comparison of promoter capture datasets using 4 cutters (DpnII or MboI) versus the 6 cutter HindIII from the same five cell types. While HindIII generally produces a higher signal-to-noise ratio for significant interactions in comparison to 4-cutters, we show that DpnII/MboI detects more proximal interactions and shows little overlap with the HindIII detection range. Promoter-interacting genomic regions mapped by 4-cutters are more enriched for regulatory features and disease-associated genetic variation than 6-cutters maps, suggesting that high-resolution maps better capture gene regulatory architectures than do lower resolution approaches.


Asunto(s)
Cromatina/genética , Mapeo Cromosómico/métodos , Enzimas de Restricción del ADN/genética , Variación Genética , Estudio de Asociación del Genoma Completo/métodos , Regiones Promotoras Genéticas , Humanos
10.
Stem Cells ; 38(10): 1332-1347, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32535942

RESUMEN

Osteoblast differentiation of bone marrow-derived human mesenchymal stem cells (hMSC) can be induced by stimulation with canonical Notch ligand, Jagged1, or bone morphogenetic proteins (BMPs). However, it remains elusive how these two pathways lead to the same phenotypic outcome. Since Runx2 is regarded as a master regulator of osteoblastic differentiation, we targeted Runx2 with siRNA in hMSC. This abrogated both Jagged1 and BMP2 mediated osteoblastic differentiation, confirming the fundamental role for Runx2. However, while BMP stimulation increased Runx2 and downstream Osterix protein expression, Jagged1 treatment failed to upregulate either, suggesting that canonical Notch signals require basal Runx2 expression. To fully understand the transcriptomic profile of differentiating osteoblasts, RNA sequencing was performed in cells stimulated with BMP2 or Jagged1. There was common upregulation of ALPL and extracellular matrix genes, such as ACAN, HAS3, MCAM, and OLFML2B. Intriguingly, genes encoding components of Notch signaling (JAG1, HEY2, and HES4) were among the top 10 genes upregulated by both stimuli. Indeed, ALPL expression occurred concurrently with Notch activation and inhibiting Notch activity for up to 24 hours after BMP administration with DAPT (a gamma secretase inhibitor) completely abrogated hMSC osteoblastogenesis. Concordantly, RBPJ (recombination signal binding protein for immunoglobulin kappa J region, a critical downstream modulator of Notch signals) binding could be demonstrated within the ALPL and SP7 promoters. As such, siRNA-mediated ablation of RBPJ decreased BMP-mediated osteoblastogenesis. Finally, systemic Notch inhibition using diabenzazepine (DBZ) reduced BMP2-induced calvarial bone healing in mice supporting the critical regulatory role of Notch signaling in BMP-induced osteoblastogenesis.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Osteoblastos/citología , Osteoblastos/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Adulto , Fosfatasa Alcalina/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Dibenzazepinas/farmacología , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Proteína Jagged-1/metabolismo , Ratones Endogámicos C57BL , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Cráneo/patología , Factor de Transcripción Sp7/genética , Factor de Transcripción Sp7/metabolismo , Adulto Joven
11.
Pediatr Res ; 89(3): 653-659, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32386398

RESUMEN

BACKGROUND: Despite improved health, shorter stature is common in cystic fibrosis (CF). We aimed to describe height velocity (HV) and contribution of height-related genetic variants to height (HT) in CF. METHODS: HV cohort: standard deviation scores (-Z) for HT, mid-parental height-adjusted HT (MPAH), and HV were generated using our Pediatric Center's CF Foundation registry data. HV-Z was compared with population means at each age (5-17 y), the relationship of HV-Z with HT-Z assessed, and HT-Z compared with MPAH-Z. GRS cohort: HT genetic risk-Z (HT-GRS-Z) were determined for pancreatic exocrine sufficient (PS) and insufficient (PI) youth and adults from our CF center and their relationships with HT-Z assessed. RESULTS: HV cohort: average HV-Z was normal across ages in our cohort but was 1.5× lower (p < 0.01) for each SD decrease in HT-Z. MPAH-Z was lower than HT-Z (p < 0.001). GRS cohort: HT-GRS-Z more strongly correlated with HT-Z and better explained height variance in PS (rho = 0.42; R2= 0.25) vs. PI (rho = 0.27; R2 = 0.11). CONCLUSIONS: Despite shorter stature compared with peers and mid-parental height, youth with CF generally have normal linear growth in mid- and late childhood. PI tempered the heritability of height. These results suggest that, in CF, final height is determined early in life in CF and genetic potential is attenuated by other factors. IMPACT: Children with CF remain shorter than their healthy peers despite advances in care. Our study demonstrates that children with CF have persistent shorter stature from an early age and fail to reach their genetic potential despite height velocities comparable to those of average maturing healthy peers and similar enrichment in known height increasing single-nucleotide polymorphisms (SNPs). Genetic risk scores better explained variability in pancreatic sufficient than in pancreatic insufficient individuals, suggesting that other modifying factors are in play for pancreatic insufficient individuals with CF. Given the CF Foundation's recommendation to target not only normal body mass index, but normal height percentiles as well, this study adds valuable insight to this discussion.


Asunto(s)
Estatura , Fibrosis Quística/fisiopatología , Insuficiencia Pancreática Exocrina/genética , Adolescente , Niño , Preescolar , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Registros Electrónicos de Salud , Femenino , Genotipo , Humanos , Masculino , Pediatría , Pubertad , Sistema de Registros , Riesgo
12.
Diabetologia ; 63(11): 2260-2269, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32797243

RESUMEN

The purpose of this review is to provide a view of the future of genomics and other omics approaches in defining the genetic contribution to all stages of risk of type 1 diabetes and the functional impact and clinical implementations of the associated variants. From the recognition nearly 50 years ago that genetics (in the form of HLA) distinguishes risk of type 1 diabetes from type 2 diabetes, advances in technology and sample acquisition through collaboration have identified over 60 loci harbouring SNPs associated with type 1 diabetes risk. Coupled with HLA region genes, these variants account for the majority of the genetic risk (~50% of the total risk); however, relatively few variants are located in coding regions of genes exerting a predicted protein change. The vast majority of genetic risk in type 1 diabetes appears to be attributed to regions of the genome involved in gene regulation, but the target effectors of those genetic variants are not readily identifiable. Although past genetic studies clearly implicated immune-relevant cell types involved in risk, the target organ (the beta cell) was left untouched. Through emergent technologies, using combinations of genetics, gene expression, epigenetics, chromosome conformation and gene editing, novel landscapes of how SNPs regulate genes have emerged. Furthermore, both the immune system and the beta cell and their biological pathways have been implicated in a context-specific manner. The use of variants from immune and beta cell studies distinguish type 1 diabetes from type 2 diabetes and, when they are combined in a genetic risk score, open new avenues for prediction and treatment. Graphical abstract.


Asunto(s)
Diabetes Mellitus Tipo 1/genética , Sitios de Carácter Cuantitativo/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple/genética
13.
Diabetologia ; 63(10): 2158-2168, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32705316

RESUMEN

AIMS/HYPOTHESIS: We aimed to characterise the immunogenic background of insulin-dependent diabetes in a resource-poor rural African community. The study was initiated because reports of low autoantibody prevalence and phenotypic differences from European-origin cases with type 1 diabetes have raised doubts as to the role of autoimmunity in this and similar populations. METHODS: A study of consecutive, unselected cases of recently diagnosed, insulin-dependent diabetes (n = 236, ≤35 years) and control participants (n = 200) was carried out in the ethnic Amhara of rural North-West Ethiopia. We assessed their demographic and socioeconomic characteristics, and measured non-fasting C-peptide, diabetes-associated autoantibodies and HLA-DRB1 alleles. Leveraging genome-wide genotyping, we performed both a principal component analysis and, given the relatively modest sample size, a provisional genome-wide association study. Type 1 diabetes genetic risk scores were calculated to compare their genetic background with known European type 1 diabetes determinants. RESULTS: Patients presented with stunted growth and low BMI, and were insulin sensitive; only 15.3% had diabetes onset at ≤15 years. C-peptide levels were low but not absent. With clinical diabetes onset at ≤15, 16-25 and 26-35 years, 86.1%, 59.7% and 50.0% were autoantibody positive, respectively. Most had autoantibodies to GAD (GADA) as a single antibody; the prevalence of positivity for autoantibodies to IA-2 (IA-2A) and ZnT8 (ZnT8A) was low in all age groups. Principal component analysis showed that the Amhara genomes were distinct from modern European and other African genomes. HLA-DRB1*03:01 (p = 0.0014) and HLA-DRB1*04 (p = 0.0001) were positively associated with this form of diabetes, while HLA-DRB1*15 was protective (p < 0.0001). The mean type 1 diabetes genetic risk score (derived from European data) was higher in patients than control participants (p = 1.60 × 10-7). Interestingly, despite the modest sample size, autoantibody-positive patients revealed evidence of association with SNPs in the well-characterised MHC region, already known to explain half of type 1 diabetes heritability in Europeans. CONCLUSIONS/INTERPRETATION: The majority of patients with insulin-dependent diabetes in rural North-West Ethiopia have the immunogenetic characteristics of autoimmune type 1 diabetes. Phenotypic differences between type 1 diabetes in rural North-West Ethiopia and the industrialised world remain unexplained.


Asunto(s)
Autoanticuerpos/inmunología , Diabetes Mellitus Tipo 1/inmunología , Transportador 8 de Zinc/inmunología , Adolescente , Adulto , Edad de Inicio , Población Negra/genética , Péptido C/sangre , Niño , Diabetes Mellitus Tipo 1/genética , Etiopía , Femenino , Estudio de Asociación del Genoma Completo , Cadenas HLA-DRB1/genética , Humanos , Masculino , Análisis de Componente Principal , Adulto Joven
14.
Am J Hum Genet ; 101(5): 643-663, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29056226

RESUMEN

Neurodegenerative diseases pose an extraordinary threat to the world's aging population, yet no disease-modifying therapies are available. Although genome-wide association studies (GWASs) have identified hundreds of risk loci for neurodegeneration, the mechanisms by which these loci influence disease risk are largely unknown. Here, we investigated the association between common genetic variants at the 7p21 locus and risk of the neurodegenerative disease frontotemporal lobar degeneration. We showed that variants associated with disease risk correlate with increased expression of the 7p21 gene TMEM106B and no other genes; co-localization analyses implicated a common causal variant underlying both association with disease and association with TMEM106B expression in lymphoblastoid cell lines and human brain. Furthermore, increases in the amount of TMEM106B resulted in increases in abnormal lysosomal phenotypes and cell toxicity in both immortalized cell lines and neurons. We then combined fine-mapping, bioinformatics, and bench-based approaches to functionally characterize all candidate causal variants at this locus. This approach identified a noncoding variant, rs1990620, that differentially recruits CTCF in lymphoblastoid cell lines and human brain to influence CTCF-mediated long-range chromatin-looping interactions between multiple cis-regulatory elements, including the TMEM106B promoter. Our findings thus provide an in-depth analysis of the 7p21 locus linked by GWASs to frontotemporal lobar degeneration, nominating a causal variant and causal mechanism for allele-specific expression and disease association at this locus. Finally, we show that genetic variants associated with risk of neurodegenerative diseases beyond frontotemporal lobar degeneration are enriched in CTCF-binding sites found in brain-relevant tissues, implicating CTCF-mediated gene regulation in risk of neurodegeneration more generally.


Asunto(s)
Demencia/genética , Regulación de la Expresión Génica/genética , Expresión Génica/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Polimorfismo de Nucleótido Simple/genética , Alelos , Encéfalo/patología , Factor de Unión a CCCTC , Línea Celular Tumoral , Cromatina , Degeneración Lobar Frontotemporal/genética , Estudio de Asociación del Genoma Completo , Genotipo , Células HeLa , Humanos , Neuronas/patología , Fenotipo , Regiones Promotoras Genéticas/genética , Proteínas Represoras/genética , Riesgo
15.
Am J Hum Genet ; 101(2): 227-238, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28757204

RESUMEN

Vitamin D insufficiency is common, correctable, and influenced by genetic factors, and it has been associated with risk of several diseases. We sought to identify low-frequency genetic variants that strongly increase the risk of vitamin D insufficiency and tested their effect on risk of multiple sclerosis, a disease influenced by low vitamin D concentrations. We used whole-genome sequencing data from 2,619 individuals through the UK10K program and deep-imputation data from 39,655 individuals genotyped genome-wide. Meta-analysis of the summary statistics from 19 cohorts identified in CYP2R1 the low-frequency (minor allele frequency = 2.5%) synonymous coding variant g.14900931G>A (p.Asp120Asp) (rs117913124[A]), which conferred a large effect on 25-hydroxyvitamin D (25OHD) levels (-0.43 SD of standardized natural log-transformed 25OHD per A allele; p value = 1.5 × 10-88). The effect on 25OHD was four times larger and independent of the effect of a previously described common variant near CYP2R1. By analyzing 8,711 individuals, we showed that heterozygote carriers of this low-frequency variant have an increased risk of vitamin D insufficiency (odds ratio [OR] = 2.2, 95% confidence interval [CI] = 1.78-2.78, p = 1.26 × 10-12). Individuals carrying one copy of this variant also had increased odds of multiple sclerosis (OR = 1.4, 95% CI = 1.19-1.64, p = 2.63 × 10-5) in a sample of 5,927 case and 5,599 control subjects. In conclusion, we describe a low-frequency CYP2R1 coding variant that exerts the largest effect upon 25OHD levels identified to date in the general European population and implicates vitamin D in the etiology of multiple sclerosis.


Asunto(s)
Colestanotriol 26-Monooxigenasa/genética , Familia 2 del Citocromo P450/genética , Predisposición Genética a la Enfermedad/genética , Esclerosis Múltiple/genética , Deficiencia de Vitamina D/diagnóstico , Deficiencia de Vitamina D/genética , Vitamina D/análogos & derivados , Frecuencia de los Genes , Genoma Humano/genética , Estudio de Asociación del Genoma Completo , Humanos , Esclerosis Múltiple/etiología , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Vitamina D/sangre
16.
Cell ; 142(3): 351-3; author reply 353-5, 2010 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-20691891
17.
Int J Obes (Lond) ; 43(8): 1556-1567, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31285522

RESUMEN

BACKGROUND/OBJECTIVES: Short sleep is an obesity risk factor, however, little is known about its interplay with genetic predisposition and pathways involved in obesity pathogenesis, especially in the longitudinal setting. We aimed to investigate a possible sleep-gene interaction for childhood obesity risk, and whether the interaction in childhood longitudinally contributes to obesity risk at a 10-year follow-up and further to test if there is any mediation through the leptin pathway. SUBJECTS/METHODS: A total of 3211 children from China (6-18 years) at baseline and 848 participants at 10-year follow-up from the Beijing Child and Adolescent Metabolic Syndrome (BCAMS) cohort study were analyzed. Baseline leptin concentrations and 12 established adult body mass index (BMI) loci were examined for the associations with habitual sleep duration. RESULTS: After adjusting for covariates, including pubertal stages and behavioral factors, short sleep duration at baseline was significantly associated with increased overweight/obesity risk at both baseline and follow-up. Genetic predisposition scores (GPS), particularly consisting of leptin-related SNPs (GPSleptin), were robustly associated with baseline overweight/obesity in children who slept ≤8 h/day (P < 0.001), whereas the association was ablated in those who slept ≥10 h/day (P > 0.05). Comparable observations were made at follow-up. Mediation analysis revealed a modest direct effect of the GPSleptin-sleep interaction on BMI at baseline, while a significant indirect effect of this interaction was found to be mediated principally through elevated leptin (proportion: 52.6%); moreover, the mediation effect via leptin remained stable over 10 years. CONCLUSIONS: This study suggests that shorter sleep duration in children from China (< 8h/day), compared to longer sleep duration (≥10 h/day), has a long-term impact on the association of polygenic risk for obesity from childhood to young adulthood and leptin pathway explains a key mechanism via a modification effect. Therefore, adequate sleep duration during childhood is important for the early prevention of obesity, especially if there is a genetic predisposition to this trait.


Asunto(s)
Leptina/metabolismo , Síndrome Metabólico/genética , Obesidad Infantil/genética , Sueño/fisiología , Adolescente , Niño , China , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad , Humanos , Masculino , Herencia Multifactorial , Obesidad Infantil/metabolismo , Obesidad Infantil/psicología , Factores de Riesgo , Factores de Tiempo
18.
Curr Diab Rep ; 19(11): 116, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31686270

RESUMEN

PURPOSE OF REVIEW: To provide an updated summary of discoveries made to date resulting from genome-wide association study (GWAS) and sequencing studies, and to discuss the latest loci added to the growing repertoire of genetic signals predisposing to type 1 diabetes (T1D). RECENT FINDINGS: Genetic studies have identified over 60 loci associated with T1D susceptibility. GWAS alone does not specifically inform on underlying mechanisms, but in combination with other sequencing and omics-data, advances are being made in our understanding of T1D genetic etiology and pathogenesis. Current knowledge indicates that genetic variation operating in both pancreatic ß cells and in immune cells is central in mediating T1D risk. One of the main challenges is to determine how these recently discovered GWAS-implicated variants affect the expression and function of gene products. Once we understand the mechanism of action for disease-causing variants, we will be well placed to apply targeted genomic approaches to impede the premature activation of the immune system in an effort to ultimately prevent the onset of T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Estudio de Asociación del Genoma Completo , Células Secretoras de Insulina , Diabetes Mellitus Tipo 1/genética , Predisposición Genética a la Enfermedad , Genómica , Humanos , Polimorfismo de Nucleótido Simple , Estudios Prospectivos
19.
Hum Mol Genet ; 25(18): 4127-4142, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27559109

RESUMEN

More than a million childhood diarrhoeal episodes occur worldwide each year, and in developed countries a considerable part of them are caused by viral infections. In this study, we aimed to search for genetic variants associated with diarrhoeal disease in young children by meta-analyzing genome-wide association studies, and to elucidate plausible biological mechanisms. The study was conducted in the context of the Early Genetics and Lifecourse Epidemiology (EAGLE) consortium. Data about diarrhoeal disease in two time windows (around 1 year of age and around 2 years of age) was obtained via parental questionnaires, doctor interviews or medical records. Standard quality control and statistical tests were applied to the 1000 Genomes imputed genotypic data. The meta-analysis (N = 5758) followed by replication (N = 3784) identified a genome-wide significant association between rs8111874 and diarrhoea at age 1 year. Conditional analysis suggested that the causal variant could be rs601338 (W154X) in the FUT2 gene. Children with the A allele, which results in a truncated FUT2 protein, had lower risk of diarrhoea. FUT2 participates in the production of histo-blood group antigens and has previously been implicated in the susceptibility to infections, including Rotavirus and Norovirus Gene-set enrichment analysis suggested pathways related to the histo-blood group antigen production, and the regulation of ion transport and blood pressure. Among others, the gastrointestinal tract, and the immune and neuro-secretory systems were detected as relevant organs. In summary, this genome-wide association meta-analysis suggests the implication of the FUT2 gene in diarrhoeal disease in young children from the general population.


Asunto(s)
Diarrea/genética , Fucosiltransferasas/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Alelos , Preescolar , Diarrea/patología , Femenino , Genotipo , Humanos , Lactante , Masculino , Polimorfismo de Nucleótido Simple , Galactósido 2-alfa-L-Fucosiltransferasa
20.
Hum Genet ; 137(5): 413-425, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29797095

RESUMEN

Although Genome Wide Association Studies (GWAS) have led to many valuable insights into the genetic bases of common diseases over the past decade, the issue of missing heritability has surfaced, as the discovered main effect genetic variants found to date do not account for much of a trait's predicted genetic component. We present a workflow, integrating epigenomics and topologically associating domain data, aimed at discovering trait-associated SNP pairs from GWAS where neither SNP achieved independent genome-wide significance. Each analyzed SNP pair consists of one SNP in a putative active enhancer and another SNP in a putative physically interacting gene promoter in a trait-relevant tissue. As a proof-of-principle case study, we used this approach to identify focused collections of SNP pairs that we analyzed in three independent Type 2 diabetes (T2D) GWAS. This approach led us to discover 35 significant SNP pairs, encompassing both novel signals and signals for which we have found orthogonal support from other sources. Nine of these pairs are consistent with eQTL results, two are consistent with our own capture C experiments, and seven involve signals supported by recent T2D literature.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Epigenómica , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Sitios de Carácter Cuantitativo/genética , Diabetes Mellitus Tipo 2/fisiopatología , Genotipo , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA