Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 43(9): 1737-1742, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37409534

RESUMEN

BACKGROUND: Familial hypercholesterolemia (FH) is a monogenic disease that causes high low-density lipoprotein cholesterol (LDL-C) and higher risk of premature coronary heart disease. The prevalence of FH-causing variants and their association with LDL-C in non-European populations remains largely unknown. Using DNA diagnosis in a population-based cohort, we aimed to estimate the prevalence of FH across 3 major ancestry groups in the United Kingdom. METHODS: Principal component analysis was used to distinguish genetic ancestry in UK Biobank participants. Whole exome sequencing data were analyzed to provide a genetic diagnosis of FH. LDL-C concentrations were adjusted for statin use. RESULTS: Principal component analysis distinguished 140 439 European, 4067 South Asian, and 3906 African participants with lipid and whole exome sequencing data. There were significant differences between the 3 groups, including total and LDL-C concentrations, and prevalence and incidence of coronary heart disease. We identified 488, 18, and 15 participants of European, South Asian, and African ancestry carrying a likely pathogenic or pathogenic FH-variant. No statistical difference in the prevalence of an FH-causing variant was observed: 1 out of 288 (95% CI, 1/316-1/264) in European, 1 out of 260 (95% CI, 1/526-1/173) in African, and 1 out of 226 (95% CI, 1/419-1/155) in South Asian. Carriers of an FH-causing variant had significantly higher LDL-C concentration than noncarriers in every ancestry group. There was no difference in median (statin-use adjusted) LDL-C concentration in FH-variant carriers depending on their ancestry background. Self-reported statin use was nonsignificantly highest in FH-variant carriers of South Asian ancestry (55.6%), followed by African (40.0%) and European (33.8%; P=0.15). CONCLUSIONS: The prevalence of FH-causing variants in the UK Biobank is similar across the ancestry groups analyzed. Despite overall differences in lipid concentrations, FH-variant carriers across the 3 ancestry groups had similar LDL-C levels. In all ancestry groups, the proportion of FH-variant carriers treated with lipid-lowering therapy should be improved to reduce future risk of premature coronary heart disease.


Asunto(s)
Enfermedad de la Arteria Coronaria , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Hiperlipoproteinemia Tipo II , Humanos , LDL-Colesterol , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Prevalencia , Bancos de Muestras Biológicas , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiología , Hiperlipoproteinemia Tipo II/genética , Enfermedad de la Arteria Coronaria/genética
2.
Pharmacoepidemiol Drug Saf ; 33(6): e5809, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38773798

RESUMEN

PURPOSE: We aimed to develop a standardized method to calculate daily dose (i.e., the amount of drug a patient was exposed to per day) of any drug on a global scale using only drug information of typical observational data in the Observational Medical Outcomes Partnership Common Data Model (OMOP CDM) and a single reference table from Observational Health Data Sciences And Informatics (OHDSI). MATERIALS AND METHODS: The OMOP DRUG_STRENGTH reference table contains information on the strength or concentration of drugs, whereas the OMOP DRUG_EXPOSURE table contains information on patients' drug prescriptions or dispensations/claims. Based on DRUG_EXPOSURE data from the primary care databases Clinical Practice Research Datalink GOLD (United Kingdom) and Integrated Primary Care Information (IPCI, The Netherlands) and healthcare claims from PharMetrics® Plus for Academics (USA), we developed four formulas to calculate daily dose given different DRUG_STRENGTH reference table information. We tested the dose formulas by comparing the calculated median daily dose to the World Health Organization (WHO) Defined Daily Dose (DDD) for six different ingredients in those three databases and additional four international databases representing a variety of healthcare settings: MAITT (Estonia, healthcare claims and discharge summaries), IQVIA Disease Analyzer Germany (outpatient data), IQVIA Longitudinal Patient Database Belgium (outpatient data), and IMASIS Parc Salut (Spain, hospital data). Finally, in each database, we assessed the proportion of drug records for which daily dose calculations were possible using the suggested formulas. RESULTS: Applying the dose formulas, we obtained median daily doses that generally matched the WHO DDD definitions. Our dose formulas were applicable to >85% of drug records in all but one of the assessed databases. CONCLUSION: We have established and implemented a standardized daily dose calculation in OMOP CDM providing reliable and reproducible results.


Asunto(s)
Bases de Datos Factuales , Humanos , Bases de Datos Factuales/estadística & datos numéricos , Reino Unido , Cálculo de Dosificación de Drogas , Países Bajos , Atención Primaria de Salud , Farmacoepidemiología/métodos , Organización Mundial de la Salud
3.
Diabetologia ; 65(4): 644-656, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35032176

RESUMEN

AIMS/HYPOTHESIS: We aimed to compare the performance of risk prediction scores for CVD (i.e., coronary heart disease and stroke), and a broader definition of CVD including atrial fibrillation and heart failure (CVD+), in individuals with type 2 diabetes. METHODS: Scores were identified through a literature review and were included irrespective of the type of predicted cardiovascular outcome or the inclusion of individuals with type 2 diabetes. Performance was assessed in a contemporary, representative sample of 168,871 UK-based individuals with type 2 diabetes (age ≥18 years without pre-existing CVD+). Missing observations were addressed using multiple imputation. RESULTS: We evaluated 22 scores: 13 derived in the general population and nine in individuals with type 2 diabetes. The Systemic Coronary Risk Evaluation (SCORE) CVD rule derived in the general population performed best for both CVD (C statistic 0.67 [95% CI 0.67, 0.67]) and CVD+ (C statistic 0.69 [95% CI 0.69, 0.70]). The C statistic of the remaining scores ranged from 0.62 to 0.67 for CVD, and from 0.64 to 0.69 for CVD+. Calibration slopes (1 indicates perfect calibration) ranged from 0.38 (95% CI 0.37, 0.39) to 0.74 (95% CI 0.72, 0.76) for CVD, and from 0.41 (95% CI 0.40, 0.42) to 0.88 (95% CI 0.86, 0.90) for CVD+. A simple recalibration process considerably improved the performance of the scores, with calibration slopes now ranging between 0.96 and 1.04 for CVD. Scores with more predictors did not outperform scores with fewer predictors: for CVD+, QRISK3 (19 variables) had a C statistic of 0.68 (95% CI 0.68, 0.69), compared with SCORE CVD (six variables) which had a C statistic of 0.69 (95% CI 0.69, 0.70). Scores specific to individuals with diabetes did not discriminate better than scores derived in the general population: the UK Prospective Diabetes Study (UKPDS) scores performed significantly worse than SCORE CVD (p value <0.001). CONCLUSIONS/INTERPRETATION: CVD risk prediction scores could not accurately identify individuals with type 2 diabetes who experienced a CVD event in the 10 years of follow-up. All 22 evaluated models had a comparable and modest discriminative ability.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Adolescente , Enfermedades Cardiovasculares/epidemiología , Diabetes Mellitus Tipo 2/complicaciones , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Atención Primaria de Salud , Estudios Prospectivos , Medición de Riesgo , Factores de Riesgo
4.
Anal Chem ; 88(9): 4661-8, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27065191

RESUMEN

Fecal metabolites are being increasingly studied to unravel the host-gut microbial metabolic interactions. However, there are currently no guidelines for fecal sample collection and storage based on a systematic evaluation of the effect of time, storage temperature, storage duration, and sampling strategy. Here we derive an optimized protocol for fecal sample handling with the aim of maximizing metabolic stability and minimizing sample degradation. Samples obtained from five healthy individuals were analyzed to assess topographical homogeneity of feces and to evaluate storage duration-, temperature-, and freeze-thaw cycle-induced metabolic changes in crude stool and fecal water using a (1)H NMR spectroscopy-based metabolic profiling approach. Interindividual variation was much greater than that attributable to storage conditions. Individual stool samples were found to be heterogeneous and spot sampling resulted in a high degree of metabolic variation. Crude fecal samples were remarkably unstable over time and exhibited distinct metabolic profiles at different storage temperatures. Microbial fermentation was the dominant driver in time-related changes observed in fecal samples stored at room temperature and this fermentative process was reduced when stored at 4 °C. Crude fecal samples frozen at -20 °C manifested elevated amino acids and nicotinate and depleted short chain fatty acids compared to crude fecal control samples. The relative concentrations of branched-chain and aromatic amino acids significantly increased in the freeze-thawed crude fecal samples, suggesting a release of microbial intracellular contents. The metabolic profiles of fecal water samples were more stable compared to crude samples. Our recommendation is that intact fecal samples should be collected, kept at 4 °C or on ice during transportation, and extracted ideally within 1 h of collection, or a maximum of 24 h. Fecal water samples should be extracted from a representative amount (∼15 g) of homogenized stool sample, aliquoted, and stored at <-20 °C, avoiding further freeze-thaw cycles.


Asunto(s)
Heces/química , Metaboloma , Manejo de Especímenes/métodos , Humanos , Temperatura
5.
JACC Adv ; 2(4): 100333, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38938233

RESUMEN

Background: People with monogenic familial hypercholesterolemia (FH) are at an increased risk of premature coronary heart disease and death. With a prevalence of 1:250, FH is relatively common; but currently there is no population screening strategy in place and most carriers are identified late in life, delaying timely and cost-effective interventions. Objectives: The purpose of this study was to derive an algorithm to identify people with suspected monogenic FH for subsequent confirmatory genomic testing and cascade screening. Methods: A least absolute shrinkage and selection operator logistic regression model was used to identify predictors that accurately identified people with FH in 139,779 unrelated participants of the UK Biobank. Candidate predictors included information on medical and family history, anthropometric measures, blood biomarkers, and a low-density lipoprotein cholesterol (LDL-C) polygenic score (PGS). Model derivation and evaluation were performed in independent training and testing data. Results: A total of 488 FH variant carriers were identified using whole-exome sequencing of the low-density lipoprotein receptor, apolipoprotein B, apolipoprotein E, proprotein convertase subtilisin/kexin type 9 genes. A 14-variable algorithm for FH was derived, with an area under the curve of 0.77 (95% CI: 0.71-0.83), where the top 5 most important variables included triglyceride, LDL-C, apolipoprotein A1 concentrations, self-reported statin use, and LDL-C PGS. Excluding the PGS as a candidate feature resulted in a 9-variable model with a comparable area under the curve: 0.76 (95% CI: 0.71-0.82). Both multivariable models (w/wo the PGS) outperformed screening-prioritization based on LDL-C adjusted for statin use. Conclusions: Detecting individuals with FH can be improved by considering additional predictors. This would reduce the sequencing burden in a 2-stage population screening strategy for FH.

6.
BMJ Med ; 2(1): e000554, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37859783

RESUMEN

Objective: To clarify the performance of polygenic risk scores in population screening, individual risk prediction, and population risk stratification. Design: Secondary analysis of data in the Polygenic Score Catalog. Setting: Polygenic Score Catalog, April 2022. Secondary analysis of 3915 performance metric estimates for 926 polygenic risk scores for 310 diseases to generate estimates of performance in population screening, individual risk, and population risk stratification. Participants: Individuals contributing to the published studies in the Polygenic Score Catalog. Main outcome measures: Detection rate for a 5% false positive rate (DR5) and the population odds of becoming affected given a positive result; individual odds of becoming affected for a person with a particular polygenic score; and odds of becoming affected for groups of individuals in different portions of a polygenic risk score distribution. Coronary artery disease and breast cancer were used as illustrative examples. Results: For performance in population screening, median DR5 for all polygenic risk scores and all diseases studied was 11% (interquartile range 8-18%). Median DR5 was 12% (9-19%) for polygenic risk scores for coronary artery disease and 10% (9-12%) for breast cancer. The population odds of becoming affected given a positive results were 1:8 for coronary artery disease and 1:21 for breast cancer, with background 10 year odds of 1:19 and 1:41, respectively, which are typical for these diseases at age 50. For individual risk prediction, the corresponding 10 year odds of becoming affected for individuals aged 50 with a polygenic risk score at the 2.5th, 25th, 75th, and 97.5th centiles were 1:54, 1:29, 1:15, and 1:8 for coronary artery disease and 1:91, 1:56, 1:34, and 1:21 for breast cancer. In terms of population risk stratification, at age 50, the risk of coronary artery disease was divided into five groups, with 10 year odds of 1:41 and 1:11 for the lowest and highest quintile groups, respectively. The 10 year odds was 1:7 for the upper 2.5% of the polygenic risk score distribution for coronary artery disease, a group that contributed 7% of cases. The corresponding estimates for breast cancer were 1:72 and 1:26 for the lowest and highest quintile groups, and 1:19 for the upper 2.5% of the distribution, which contributed 6% of cases. Conclusion: Polygenic risk scores performed poorly in population screening, individual risk prediction, and population risk stratification. Strong claims about the effect of polygenic risk scores on healthcare seem to be disproportionate to their performance.

7.
Front Genet ; 13: 845498, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432461

RESUMEN

Background: Monogenic familial hypercholesterolaemia (FH) is an autosomal dominant disorder characterised by elevated low-density lipoprotein cholesterol (LDL-C) concentrations due to monogenic mutations in LDLR, APOB, PCSK9, and APOE. Some mutation-negative patients have a polygenic cause for elevated LDL-C due to a burden of common LDL-C-raising alleles, as demonstrated in people of White British (WB) ancestry using a 12-single nucleotide polymorphism (SNP) score. This score has yet to be evaluated in people of South Asian (SA), and Black and Caribbean (BC) ethnicities. Objectives: 1) Compare the LDL-C and 12-SNP score distributions across the three major ethnic groups in the United Kingdom: WB, SA, and BC individuals; 2) compare the association of the 12-SNP score with LDL-C in these groups; 3) evaluate ethnicity-specific and WB 12-SNP score decile cut-off values, applied to SA and BC ethnicities, in predicting LDL-C concentrations and hypercholesterolaemia (LDL-C>4.9 mmol/L). Methods: The United Kingdom Biobank cohort was used to analyse the LDL-C (adjusted for statin use) and 12-SNP score distributions in self-reported WB (n = 353,166), SA (n = 7,016), and BC (n = 7,082) participants. To evaluate WB and ethnicity-specific 12-SNP score deciles, the total dataset was split 50:50 into a training and testing dataset. Regression analyses (logistic and linear) were used to analyse hypercholesterolaemia (LDL-C>4.9 mmol/L) and LDL-C. Findings: The mean (±SD) measured LDL-C differed significantly between the ethnic groups and was highest in WB [3.73 (±0.85) mmol/L], followed by SA [3.57 (±0.86) mmol/L, p < 2.2 × 10-16], and BC [3.42 (±0.90) mmol/L] participants (p < 2.2 × 10-16). There were significant differences in the mean (±SD) 12-SNP score between WB [0.90 (±0.23)] and BC [0.72 (±0.25), p < 2.2 × 10-16], and WB and SA participants [0.86 (±0.19), p < 2.2 × 10-16]. In all three ethnic groups the 12-SNP score was associated with measured LDL-C [R 2 (95% CI): WB = 0.067 (0.065-0.069), BC = 0.080 (0.063-0.097), SA = 0.027 (0.016-0.038)]. The odds ratio and the area under the curve for hypercholesterolaemia were not statistically different when applying ethnicity-specific or WB deciles in all ethnic groups. Interpretation: We provide information on the differences in LDL-C and the 12-SNP score distributions in self-reported WB, SA, and BC individuals of the United Kingdom Biobank. We report the association between the 12-SNP score and LDL-C in these ethnic groups. We evaluate the performance of ethnicity-specific and WB 12-SNP score deciles in predicting LDL-C and hypercholesterolaemia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA