Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Clin Pharmacol Ther ; 114(2): 381-392, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37151050

RESUMEN

Trimethoprim is predicted to inhibit several thiamine transporters, including the primary thiamine intestinal absorptive transporter, ThTR-2, and the hepatic and renal organic cation transporters, OCT1, OCT2, and MATEs. To investigate the effect of trimethoprim on thiamine absorption, studies were conducted in cells, mice, and healthy volunteers and supported by use of real-world data. In a randomized, crossover clinical study, seven healthy volunteers were given a single oral dose of thiamine or thiamine plus trimethoprim, followed by blood sampling. The thiamine area under the curve (AUC) increased with trimethoprim co-administration (P value = 0.031). Similar results were seen in mice. Trimethoprim appeared to act on thiamine absorption through inhibition of hepatic OCT1 as evidenced from its ability to modulate levels of isobutyrylcarnitine and propionylcarnitine, OCT1 biomarkers identified from metabolomic analyses. Real-world data further supported this finding, showing an association between trimethoprim use and higher levels of triglycerides, LDL cholesterol, and total cholesterol, consistent with OCT1 inhibition (P values: 2.2 × 10-16 , 5.75 × 10-7 , and 5.82 × 10-7 , respectively). These findings suggest that trimethoprim increases plasma levels of thiamine by inhibiting hepatic OCT1. Trimethoprim reduced urinary excretion and clearance of biomarkers for OCT2 and MATEs, consistent with inhibition of renal organic cation transporters. This inhibition did not appear to play a role in the observed increases in thiamine levels. This study highlights the potential for drug-nutrient interactions involving transporters, in addition to transporters' established role in drug-drug interactions.


Asunto(s)
Tiamina , Trimetoprim , Animales , Ratones , Humanos , Tiamina/farmacología , Trimetoprim/farmacología , Proteínas de Transporte de Membrana , Interacciones Alimento-Droga , Biomarcadores , Nutrientes , Cationes , Proteínas de Transporte de Catión Orgánico , Transportador 2 de Cátion Orgánico , Células HEK293
2.
Am J Clin Nutr ; 111(1): 110-121, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31764942

RESUMEN

BACKGROUND: Transporter-mediated drug-nutrient interactions have the potential to cause serious adverse events. However, unlike drug-drug interactions, these drug-nutrient interactions receive little attention during drug development. The clinical importance of drug-nutrient interactions was highlighted when a phase III clinical trial was terminated due to severe adverse events resulting from potent inhibition of thiamine transporter 2 (ThTR-2; SLC19A3). OBJECTIVE: In this study, we tested the hypothesis that therapeutic drugs inhibit the intestinal thiamine transporter ThTR-2, which may lead to thiamine deficiency. METHODS: For this exploration, we took a multifaceted approach, starting with a high-throughput in vitro primary screen to identify inhibitors, building in silico models to characterize inhibitors, and leveraging real-world data from electronic health records to begin to understand the clinical relevance of these inhibitors. RESULTS: Our high-throughput screen of 1360 compounds, including many clinically used drugs, identified 146 potential inhibitors at 200 µM. Inhibition kinetics were determined for 28 drugs with half-maximal inhibitory concentration (IC50) values ranging from 1.03 µM to >1 mM. Several oral drugs, including metformin, were predicted to have intestinal concentrations that may result in ThTR-2-mediated drug-nutrient interactions. Complementary analysis using electronic health records suggested that thiamine laboratory values are reduced in individuals receiving prescription drugs found to significantly inhibit ThTR-2, particularly in vulnerable populations (e.g., individuals with alcoholism). CONCLUSIONS: Our comprehensive analysis of prescription drugs suggests that several marketed drugs inhibit ThTR-2, which may contribute to thiamine deficiency, especially in at-risk populations.


Asunto(s)
Interacciones Alimento-Droga , Proteínas de Transporte de Membrana/química , Preparaciones Farmacéuticas/química , Transporte Biológico/efectos de los fármacos , Células HEK293 , Humanos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Preparaciones Farmacéuticas/metabolismo , Medicamentos bajo Prescripción/química , Medicamentos bajo Prescripción/metabolismo , Tiamina/metabolismo
3.
Sci Transl Med ; 12(554)2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32727913

RESUMEN

Requiring regional or in-country confirmatory clinical trials before approval of drugs already approved elsewhere delays access to medicines in low- and middle-income countries and raises drug costs. Here, we discuss the scientific and technological advances that may reduce the need for in-country or in-region clinical trials for drugs approved in other countries and limitations of these advances that could necessitate in-region clinical studies.


Asunto(s)
Países en Desarrollo , Costos de los Medicamentos , Aprobación de Drogas , Desarrollo de Medicamentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA