Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 555(7697): 475-482, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29539637

RESUMEN

Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.


Asunto(s)
Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/química , Poro Nuclear/metabolismo , Saccharomyces cerevisiae/química , Reactivos de Enlaces Cruzados/química , Espectrometría de Masas , Modelos Moleculares , Estabilidad Proteica , Transporte de Proteínas , Transporte de ARN
2.
Mol Cell ; 59(5): 794-806, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26340423

RESUMEN

TFIIH is essential for both RNA polymerase II transcription and DNA repair, and mutations in TFIIH can result in human disease. Here, we determine the molecular architecture of human and yeast TFIIH by an integrative approach using chemical crosslinking/mass spectrometry (CXMS) data, biochemical analyses, and previously published electron microscopy maps. We identified four new conserved "topological regions" that function as hubs for TFIIH assembly and more than 35 conserved topological features within TFIIH, illuminating a network of interactions involved in TFIIH assembly and regulation of its activities. We show that one of these conserved regions, the p62/Tfb1 Anchor region, directly interacts with the DNA helicase subunit XPD/Rad3 in native TFIIH and is required for the integrity and function of TFIIH. We also reveal the structural basis for defects in patients with xeroderma pigmentosum and trichothiodystrophy, with mutations found at the interface between the p62 Anchor region and the XPD subunit.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIIH/química , Factor de Transcripción TFIIH/metabolismo , Reactivos de Enlaces Cruzados , ADN Helicasas/química , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN , Humanos , Espectrometría de Masas , Modelos Moleculares , Mutación , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factor de Transcripción TFIIH/genética , Factores de Transcripción TFII/química , Factores de Transcripción TFII/genética , Factores de Transcripción TFII/metabolismo , Transcripción Genética , Xerodermia Pigmentosa/genética , Xerodermia Pigmentosa/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo D/química , Proteína de la Xerodermia Pigmentosa del Grupo D/genética , Proteína de la Xerodermia Pigmentosa del Grupo D/metabolismo
3.
J Struct Biol ; 194(3): 303-10, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26968363

RESUMEN

Modeling protein complex structures based on distantly related homologues can be challenging due to poor sequence and structure conservation. Therefore, utilizing even low-resolution experimental data can significantly increase model precision and accuracy. Here, we present models of the two key functional states of the yeast γ-tubulin small complex (γTuSC): one for the low-activity "open" state and another for the higher-activity "closed" state. Both models were computed based on remotely related template structures and cryo-EM density maps at 6.9Šand 8.0Šresolution, respectively. For each state, extensive sampling of alignments and conformations was guided by the fit to the corresponding cryo-EM density map. The resulting good-scoring models formed a tightly clustered ensemble of conformations in most regions. We found significant structural differences between the two states, primarily in the γ-tubulin subunit regions where the microtubule binds. We also report a set of chemical cross-links that were found to be consistent with equilibrium between the open and closed states. The protocols developed here have been incorporated into our open-source Integrative Modeling Platform (IMP) software package (http://integrativemodeling.org), and can therefore be applied to many other systems.


Asunto(s)
Proteínas Fúngicas/química , Tubulina (Proteína)/química , Microscopía por Crioelectrón/métodos , Modelos Moleculares , Conformación Proteica , Programas Informáticos , Homología Estructural de Proteína
4.
Methods Mol Biol ; 2022: 353-377, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396911

RESUMEN

Integrative structure modeling provides 3D models of macromolecular systems that are based on information from multiple types of experiments, physical principles, statistical inferences, and prior structural models. Here, we provide a hands-on realistic example of integrative structure modeling of the quaternary structure of the actin, tropomyosin, and gelsolin protein assembly based on electron microscopy, solution X-ray scattering, and chemical crosslinking data for the complex as well as excluded volume, sequence connectivity, and rigid atomic X-ray structures of the individual subunits. We follow the general four-stage process for integrative modeling, including gathering the input information, converting the input information into a representation of the system and a scoring function, sampling alternative model configurations guided by the scoring function, and analyzing the results. The computational aspects of this approach are implemented in our open-source Integrative Modeling Platform (IMP), a comprehensive and extensible software package for integrative modeling ( https://integrativemodeling.org ). In particular, we rely on the Python Modeling Interface (PMI) module of IMP that provides facile mixing and matching of macromolecular representations, restraints based on different types of information, sampling algorithms, and analysis including validations of the input data and output models. Finally, we also outline how to deposit an integrative structure and corresponding experimental data into PDB-Dev, the nascent worldwide Protein Data Bank (wwPDB) resource for archiving and disseminating integrative structures ( https://pdb-dev.wwpdb.org ). The example application provides a starting point for a user interested in using IMP for integrative modeling of other biomolecular systems.


Asunto(s)
Biología Computacional/métodos , Sustancias Macromoleculares/química , Bases de Datos de Proteínas , Modelos Moleculares , Conformación Proteica , Programas Informáticos
5.
Structure ; 27(1): 175-188.e6, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30393052

RESUMEN

Cryo-electron microscopy (cryo-EM) has become a mainstream technique for determining the structures of complex biological systems. However, accurate integrative structural modeling has been hampered by the challenges in objectively weighing cryo-EM data against other sources of information due to the presence of random and systematic errors, as well as correlations, in the data. To address these challenges, we introduce a Bayesian scoring function that efficiently and accurately ranks alternative structural models of a macromolecular system based on their consistency with a cryo-EM density map as well as other experimental and prior information. The accuracy of this approach is benchmarked using complexes of known structure and illustrated in three applications: the structural determination of the GroEL/GroES, RNA polymerase II, and exosome complexes. The approach is implemented in the open-source Integrative Modeling Platform (http://integrativemodeling.org), thus enabling integrative structure determination by combining cryo-EM data with other sources of information.


Asunto(s)
Microscopía por Crioelectrón/métodos , Simulación de Dinámica Molecular , Proteínas Bacterianas/química , Teorema de Bayes , Chaperonina 10/química , Chaperonina 60/química , Espectrometría de Masas/métodos , ARN Polimerasa II/química
6.
Protein Sci ; 27(1): 245-258, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28960548

RESUMEN

Building models of a biological system that are consistent with the myriad data available is one of the key challenges in biology. Modeling the structure and dynamics of macromolecular assemblies, for example, can give insights into how biological systems work, evolved, might be controlled, and even designed. Integrative structure modeling casts the building of structural models as a computational optimization problem, for which information about the assembly is encoded into a scoring function that evaluates candidate models. Here, we describe our open source software suite for integrative structure modeling, Integrative Modeling Platform (https://integrativemodeling.org), and demonstrate its use.


Asunto(s)
Biología Computacional , Simulación por Computador , Modelos Moleculares , Programas Informáticos
7.
Elife ; 42015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26402457

RESUMEN

The 21-subunit Mediator complex transduces regulatory information from enhancers to promoters, and performs an essential role in the initiation of transcription in all eukaryotes. Structural information on two-thirds of the complex has been limited to coarse subunit mapping onto 2-D images from electron micrographs. We have performed chemical cross-linking and mass spectrometry, and combined the results with information from X-ray crystallography, homology modeling, and cryo-electron microscopy by an integrative modeling approach to determine a 3-D model of the entire Mediator complex. The approach is validated by the use of X-ray crystal structures as internal controls and by consistency with previous results from electron microscopy and yeast two-hybrid screens. The model shows the locations and orientations of all Mediator subunits, as well as subunit interfaces and some secondary structural elements. Segments of 20-40 amino acid residues are placed with an average precision of 20 Å. The model reveals roles of individual subunits in the organization of the complex.


Asunto(s)
Complejo Mediador/química , Saccharomyces cerevisiae/química , Reactivos de Enlaces Cruzados/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Espectrometría de Masas , Modelos Biológicos , Modelos Moleculares
8.
Nat Struct Mol Biol ; 22(2): 132-7, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25599398

RESUMEN

The γ-tubulin ring complex (γTuRC) is the primary microtubule nucleator in cells. γTuRC is assembled from repeating γ-tubulin small complex (γTuSC) subunits and is thought to function as a template by presenting a γ-tubulin ring that mimics microtubule geometry. However, a previous yeast γTuRC structure showed γTuSC in an open conformation that prevents matching to microtubule symmetry. By contrast, we show here that γ-tubulin complexes are in a closed conformation when attached to microtubules. To confirm the functional importance of the closed γTuSC ring, we trapped the closed state and determined its structure, showing that the γ-tubulin ring precisely matches microtubule symmetry and providing detailed insight into γTuRC architecture. Importantly, the closed state is a stronger nucleator, thus suggesting that this conformational switch may allosterically control γTuRC activity. Finally, we demonstrate that γTuRCs have a strong preference for tubulin from the same species.


Asunto(s)
Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína
9.
PLoS One ; 7(10): e48458, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23119028

RESUMEN

The mechanism for hemorrhage enlargement in the brain, a key determinant of patient outcome following hemorrhagic stroke, is unknown. We performed computer-based stochastic simulation of one proposed mechanism, in which hemorrhages grow in "domino" fashion via secondary shearing of neighboring vessel segments. Hemorrhages were simulated by creating an initial site of primary bleeding and an associated risk of secondary rupture at adjacent sites that decayed over time. Under particular combinations of parameters for likelihood of secondary rupture and time-dependent decay, a subset of lesions expanded, creating a bimodal distribution of microbleeds and macrobleeds. Systematic variation of the model to simulate anticoagulation yielded increases in both macrobleed occurrence (26.9%, 53.2%, and 70.0% of all hemorrhagic events under conditions simulating no, low-level, and high-level anticoagulation) and final hemorrhage size (median volumes 111, 276, and 412 under the same three conditions), consistent with data from patients with anticoagulant-related brain hemorrhages. Reversal from simulated high-level anticoagulation to normal coagulation was able to reduce final hemorrhage size only if applied relatively early in the course of hemorrhage expansion. These findings suggest that a model based on a secondary shearing mechanism can account for some of the clinically observed properties of intracerebral hemorrhage, including the bimodal distribution of volumes and the enhanced hemorrhage growth seen with anticoagulation. Future iterations of this model may be useful for elucidating the effects of hemorrhage growth of factors related to secondary shearing (such as small vessel pathology) or time-dependent decay (such as hemostatic agents).


Asunto(s)
Anticoagulantes/efectos adversos , Encéfalo/patología , Hemorragia Cerebral/inducido químicamente , Hemorragia Cerebral/patología , Modelos Biológicos , Coagulación Sanguínea , Simulación por Computador , Humanos
10.
Structure ; 20(4): 582-92, 2012 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-22483106

RESUMEN

In spite of its recent achievements, the technique of single particle electron cryomicroscopy (cryoEM) has not been widely used to study proteins smaller than 100 kDa, although it is a highly desirable application of this technique. One fundamental limitation is that images of small proteins embedded in vitreous ice do not contain adequate features for accurate image alignment. We describe a general strategy to overcome this limitation by selecting a fragment antigen binding (Fab) to form a stable and rigid complex with a target protein, thus providing a defined feature for accurate image alignment. Using this approach, we determined a three-dimensional structure of an ∼65 kDa protein by single particle cryoEM. Because Fabs can be readily generated against a wide range of proteins by phage display, this approach is generally applicable to study many small proteins by single particle cryoEM.


Asunto(s)
Proteínas de Escherichia coli/química , Fragmentos Fab de Inmunoglobulinas/química , Proproteína Convertasas/química , Serina Endopeptidasas/química , Proteínas de Transporte Vesicular de Glutamato/química , Microscopía por Crioelectrón/métodos , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/metabolismo , Modelos Moleculares , Peso Molecular , Biblioteca de Péptidos , Proproteína Convertasa 9 , Proproteína Convertasas/genética , Proproteína Convertasas/metabolismo , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Proteínas de Transporte Vesicular de Glutamato/genética , Proteínas de Transporte Vesicular de Glutamato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA