RESUMEN
Light-emitting diodes (LEDs) based on metal halide perovskites (PeLEDs) with high colour quality and facile solution processing are promising candidates for full-colour and high-definition displays1-4. Despite the great success achieved in green PeLEDs with lead bromide perovskites5, it is still challenging to realize pure-red (620-650 nm) LEDs using iodine-based counterparts, as they are constrained by the low intrinsic bandgap6. Here we report efficient and colour-stable PeLEDs across the entire pure-red region, with a peak external quantum efficiency reaching 28.7% at 638 nm, enabled by incorporating a double-end anchored ligand molecule into pure-iodine perovskites. We demonstrate that a key function of the organic intercalating cation is to stabilize the lead iodine octahedron through coordination with exposed lead ions and enhanced hydrogen bonding with iodine. The molecule synergistically facilitates spectral modulation, promotes charge transfer between perovskite quantum wells and reduces iodine migration under electrical bias. We realize continuously tunable emission wavelengths for iodine-based perovskite films with suppressed energy loss due to the decrease in bond energy of lead iodine in ionic perovskites as the bandgap increases. Importantly, the resultant devices show outstanding spectral stability and a half-lifetime of more than 7,600 min at an initial luminance of 100 cd m-2.
RESUMEN
Perovskite light-emitting diodes (LEDs) have attracted broad attention due to their rapidly increasing external quantum efficiencies (EQEs)1-15. However, most high EQEs of perovskite LEDs are reported at low current densities (<1 mA cm-2) and low brightness. Decrease in efficiency and rapid degradation at high brightness inhibit their practical applications. Here, we demonstrate perovskite LEDs with exceptional performance at high brightness, achieved by the introduction of a multifunctional molecule that simultaneously removes non-radiative regions in the perovskite films and suppresses luminescence quenching of perovskites at the interface with charge-transport layers. The resulting LEDs emit near-infrared light at 800 nm, show a peak EQE of 23.8% at 33 mA cm-2 and retain EQEs more than 10% at high current densities of up to 1,000 mA cm-2. In pulsed operation, they retain EQE of 16% at an ultrahigh current density of 4,000 mA cm-2, along with a high radiance of more than 3,200 W s-1 m-2. Notably, an operational half-lifetime of 32 h at an initial radiance of 107 W s-1 m-2 has been achieved, representing the best stability for perovskite LEDs having EQEs exceeding 20% at high brightness levels. The demonstration of efficient and stable perovskite LEDs at high brightness is an important step towards commercialization and opens up new opportunities beyond conventional LED technologies, such as perovskite electrically pumped lasers.
RESUMEN
Metal halide perovskites are attracting a lot of attention as next-generation light-emitting materials owing to their excellent emission properties, with narrow band emission1-4. However, perovskite light-emitting diodes (PeLEDs), irrespective of their material type (polycrystals or nanocrystals), have not realized high luminance, high efficiency and long lifetime simultaneously, as they are influenced by intrinsic limitations related to the trade-off of properties between charge transport and confinement in each type of perovskite material5-8. Here, we report an ultra-bright, efficient and stable PeLED made of core/shell perovskite nanocrystals with a size of approximately 10 nm, obtained using a simple in situ reaction of benzylphosphonic acid (BPA) additive with three-dimensional (3D) polycrystalline perovskite films, without separate synthesis processes. During the reaction, large 3D crystals are split into nanocrystals and the BPA surrounds the nanocrystals, achieving strong carrier confinement. The BPA shell passivates the undercoordinated lead atoms by forming covalent bonds, and thereby greatly reduces the trap density while maintaining good charge-transport properties for the 3D perovskites. We demonstrate simultaneously efficient, bright and stable PeLEDs that have a maximum brightness of approximately 470,000 cd m-2, maximum external quantum efficiency of 28.9% (average = 25.2 ± 1.6% over 40 devices), maximum current efficiency of 151 cd A-1 and half-lifetime of 520 h at 1,000 cd m-2 (estimated half-lifetime >30,000 h at 100 cd m-2). Our work sheds light on the possibility that PeLEDs can be commercialized in the future display industry.
RESUMEN
Hyperfluorescence shows great promise for the next generation of commercially feasible blue organic light-emitting diodes, for which eliminating the Dexter transfer to terminal emitter triplet states is key to efficiency and stability. Current devices rely on high-gap matrices to prevent Dexter transfer, which unfortunately leads to overly complex devices from a fabrication standpoint. Here we introduce a molecular design where ultranarrowband blue emitters are covalently encapsulated by insulating alkylene straps. Organic light-emitting diodes with simple emissive layers consisting of pristine thermally activated delayed fluorescence hosts doped with encapsulated terminal emitters exhibit negligible external quantum efficiency drops compared with non-doped devices, enabling a maximum external quantum efficiency of 21.5%. To explain the high efficiency in the absence of high-gap matrices, we turn to transient absorption spectroscopy. It is directly observed that Dexter transfer from a pristine thermally activated delayed fluorescence sensitizer host can be substantially reduced by an encapsulated terminal emitter, opening the door to highly efficient 'matrix-free' blue hyperfluorescence.
RESUMEN
Blends comprising organic semiconductors and inorganic quantum dots (QDs) are relevant for many optoelectronic applications and devices. However, the individual components in organic-QD blends have a strong tendency to aggregate and phase-separate during film processing, compromising both their structural and electronic properties. Here, we demonstrate a QD surface engineering approach using electronically active, highly soluble semiconductor ligands that are matched to the organic semiconductor host material to achieve well-dispersed inorganic-organic blend films, as characterized by X-ray and neutron scattering, and electron microscopies. This approach preserves the electronic properties of the organic and QD phases and also creates an optimized interface between them. We exemplify this in two emerging applications, singlet-fission-based photon multiplication (SF-PM) and triplet-triplet annihilation-based photon upconversion (TTA-UC). Steady-state and time-resolved optical spectroscopy shows that triplet excitons can be transferred with near unity efficiently across the organic-inorganic interface, while the organic films maintain efficient SF (190% yield) in the organic phase. By changing the relative energy between organic and inorganic components, yellow upconverted emission is observed upon 790 nm NIR excitation. Overall, we provide a highly versatile approach to overcome longstanding challenges in the blending of organic semiconductors with QDs that have relevance for many optical and optoelectronic applications.
RESUMEN
Carbene-metal-amides (CMAs) are emerging delayed fluorescence materials for organic light-emitting diode (OLED) applications. CMAs possess fast, efficient emission owing to rapid forward and reverse intersystem crossing (ISC) rates. The resulting dynamic equilibrium between singlet and triplet spin manifolds distinguishes CMAs from most purely organic thermally activated delayed fluorescence emitters. However, direct experimental triplet characterization in CMAs is underutilized, limiting our detailed understanding of the ISC mechanism. In this work, we combine time-resolved spectroscopy with tuning of state energies through environmental polarity and metal substitution, focusing on the interplay between charge-transfer (3CT) and local exciton (3LE) triplets. Unlike previous photophysical work, we investigate evaporated host : guest films of CMAs and small-molecule hosts for increased device relevance. Transient absorption reveals an evolution in the triplet excited-state absorption (ESA) consistent with a change in orbital character between hosts with differing dielectric constants. Using quantum chemical calculations, we simulate ESAs of the lowest triplet states, highlighting the contribution of only 3CT and donor-moiety 3LE states to spectral features, with no strong evidence for a low-lying acceptor-centered 3LE. Thus, our work provides a blueprint for understanding the role of triplet excited states in CMAs which will enable further intelligent optimization of this promising class of materials.
RESUMEN
Fast diffusion of charge carriers is crucial for efficient charge collection in perovskite solar cells. While lateral transient photoluminescence microscopies have been popularly used to characterize charge diffusion in perovskites, there exists a discrepancy between low diffusion coefficients measured and near-unity charge collection efficiencies achieved in practical solar cells. Here, we reveal hidden microscopic dynamics in halide perovskites through four-dimensional (directions x, y and z and time t) tracking of charge carriers by characterizing out-of-plane diffusion of charge carriers. By combining this approach with confocal microscopy, we discover a strong local heterogeneity of vertical charge diffusivities in a three-dimensional perovskite film, arising from the difference between intragrain and intergrain diffusion. We visualize that most charge carriers are efficiently transported through the direct intragrain pathways or via indirect detours through nearby areas with fast diffusion. The observed anisotropy and heterogeneity of charge carrier diffusion in perovskites rationalize their high performance as shown in real devices. Our work also foresees that further control of polycrystal growth will enable solar cells with micrometres-thick perovskites to achieve both long optical path length and efficient charge collection simultaneously.
Asunto(s)
Compuestos de Calcio , Compuestos Inorgánicos , Óxidos , Microscopía ConfocalRESUMEN
Controlling the dispersibility of nanocrystalline inorganic quantum dots (QDs) within organic semiconductor (OSC):QD nanocomposite films is critical for a wide range of optoelectronic devices. This work demonstrates how small changes to the OSC host molecule can have a dramatic detrimental effect on QD dispersibility within the host organic semiconductor matrix as quantified by grazing incidence X-ray scattering. It is commonplace to modify QD surface chemistry to enhance QD dispersibility within an OSC host. Here, an alternative route toward optimizing QD dispersibilities is demonstrated, which dramatically improves QD dispersibilities through blending two different OSCs to form a fully mixed OSC matrix phase.
RESUMEN
Colloidal lead-halide perovskite nanocrystals (LHP NCs) have emerged over the past decade as leading candidates for efficient next-generation optoelectronic devices, but their properties and performance critically depend on how they are purified. While antisolvents are widely used for purification, a detailed understanding of how the polarity of the antisolvent influences the surface chemistry and composition of the NCs is missing in the field. Here, we fill this knowledge gap by studying the surface chemistry of purified CsPbBrxI3-x NCs as the model system, which in itself is considered a promising candidate for pure-red light-emitting diodes and top-cells for tandem photovoltaics. Interestingly, we find that as the polarity of the antisolvent increases (from methyl acetate to acetone to butanol), there is a blueshift in the photoluminescence (PL) peak of the NCs along with a decrease in PL quantum yield (PLQY). Through transmission electron microscopy and X-ray photoemission spectroscopy measurements, we find that these changes in PL properties arise from antisolvent-induced iodide removal, which leads to a change in halide composition and, thus, the bandgap. Using detailed nuclear magnetic resonance (NMR) and Fourier-transform infrared spectroscopy (FTIR) measurements along with density functional theory calculations, we propose that more polar antisolvents favor the detachment of the oleic acid and oleylamine ligands, which undergo amide condensation reactions, leading to the removal of iodide anions from the NC surface bound to these ligands. This work shows that careful selection of low-polarity antisolvents is a critical part of designing the synthesis of NCs to achieve high PLQYs with minimal defect-mediated phase segregation.
RESUMEN
Photon recycling has received increased attention in recent years following its observation in halide perovskites. It has been shown to lower the effective bimolecular recombination rate and thus increase excitation densities within a material. Here we introduce a general framework to quantify photon recycling which can be applied to any material. We apply our model to idealized solar cells and light-emitting diodes based on halide perovskites. By varying controllable parameters which affect photon recycling, namely, thickness, charge trapping rate, nonideal transmission at interfaces, and absorptance, we quantify the effect of each on photon recycling. In both device types, we demonstrate that maximizing absorption and emission processes remains paramount for optimizing devices, even if this is at the expense of photon recycling. Our results provide new insight into quantifying photon recycling in optoelectronic devices and demonstrate that photon recycling cannot always be seen as a beneficial process.
RESUMEN
Nanocrystal quantum dots (QD) functionalised with active organic ligands hold significant promise as solar energy conversion materials, capable of multiexcitonic processes that could improve the efficiencies of single-junction photovoltaic devices. Small-angle X-ray and neutron scattering (SAXS and SANS) were used to characterize the structure of lead sulphide QDs post ligand-exchange with model acene-carboxylic acid ligands (benzoic acid, hydrocinnamic acid and naphthoic acid). Results demonstrate that hydrocinnamic acid and naphthoic acid ligated QDs form monolayer ligand shells, whilst benzoic acid ligated QDs possess ligand shells thicker than a monolayer. Further, the formation of a range of nanocomposite materials through the self-assembly of such acene-ligated QDs with an organic small-molecule semiconductor [5,12-bis((triisopropylsilyl)ethynyl)tetracene (TIPS-Tc)] is investigated. These materials are representative of a wider set of functional solar energy materials; here the focus is on structural studies, and their optoelectronic function is not investigated. As TIPS-Tc concentrations are increased, approaching the solubility limit, SANS data show that QD fractal-like features form, with structures possibly consistent with a diffusion limited aggregation mechanism. These, it is likely, act as heterogeneous nucleation agents for TIPS-Tc crystallization, generating agglomerates containing both QDs and TIPS-Tc. Within the TIPS-Tc crystals there seem to be three distinct QD morphologies: (i) at the crystallite centre (fractal-like QD aggregates acting as nucleating agents), (ii) trapped within the growing crystallite (giving rise to QD features ordered as sticky hard spheres), and (iii) a population of aggregate QDs at the periphery of the crystalline interface that were expelled from the growing TIPS-Tc crystal. Exposure of the QD:TIPS-Tc crystals to DMF vapour, a solvent known to be able to strip ligands from QDs, alters the spacing between PbS-hydrocinnamic acid and PbS-naphthoic acid ligated QD aggregate features. In contrast, for PbS-benzoic acid ligated QDs, DMF vapour exposure promotes the formation of ordered QD colloidal crystal type phases. This work thus demonstrates how different QD ligand chemistries control the interactions between QDs and an organic small molecule, leading to widely differing self-assembly processes. It highlights the unique capabilities of multiscale X-ray and neutron scattering in characterising such composite materials.
RESUMEN
Luminescent semiconductor quantum dots (QDs) have recently been suggested as novel probes for imaging and sensing cell membrane voltages. However, a key bottleneck for their development is a lack of techniques to assess QD responses to voltages generated in the aqueous electrolytic environments typical of biological systems. Even more generally, there have been relatively few efforts to assess the response of QDs to voltage changes in live cells. Here, we develop a platform for monitoring the photoluminescence (PL) response of QDs under AC and DC voltage changes within aqueous ionic environments. We evaluate both traditional CdSe/CdS and more biologically compatible InP/ZnS QDs at a range of ion concentrations to establish their PL/voltage characteristics on chip. Wide-field, few-particle PL measurements with neuronal cells show the QDs can be used to track local voltage changes with greater sensitivity (ΔPL up to twice as large) than state-of-the-art calcium imaging dyes, making them particularly appealing for tracking subthreshold events. Additional physiological observation studies showed that while CdSe/CdS dots have greater PL responses on membrane depolarization, their lower cytotoxicity makes InP/ZnS far more suitable for voltage sensing in living systems. Our results provide a methodology for the rational development of QD voltage sensors and highlight their potential for imaging changes in cell membrane voltage.
Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Potenciales de la Membrana , Neuronas/metabolismo , Puntos Cuánticos/química , Animales , Coloides , Microscopía Fluorescente , Neuronas/citología , Xenopus laevisRESUMEN
Singlet fission is an exciton multiplication process in organic molecules in which a photogenerated spin-singlet exciton is rapidly and efficiently converted to two spin-triplet excitons. This process offers a mechanism to break the Shockley-Queisser limit by overcoming the thermalization losses inherent to all single-junction photovoltaics. One of the most promising methods to harness the singlet fission process is via the efficient extraction of the dark triplet excitons into quantum dots (QDs) where they can recombine radiatively, thereby converting high-energy photons to pairs of low-energy photons, which can then be captured in traditional inorganic PVs such as Si. Such a singlet fission photon multiplication (SF-PM) process could increase the efficiency of the best Si cells from 26.7% to 32.5%, breaking the Shockley-Queisser limit. However, there has been no demonstration of such a singlet fission photon multiplication (SF-PM) process in a bulk system to date. Here, we demonstrate a solution-based bulk SF-PM system based on the singlet fission material TIPS-Tc combined with PbS QDs. Using a range of steady-state and time-resolved measurements combined with analytical modeling we study the dynamics and mechanism of the triplet harvesting process. We show that the system absorbs >95% of incident photons within the singlet fission material to form singlet excitons, which then undergo efficient singlet fission in the solution phase (135 ± 5%) before quantitative harvesting of the triplet excitons (95 ± 5%) via a low concentration of QD acceptors, followed by the emission of IR photons. We find that in order to achieve efficient triplet harvesting it is critical to engineer the surface of the QD with a triplet transfer ligand and that bimolecular decay of triplets is potentially a major loss pathway which can be controlled via tuning the concentration of QD acceptors. We demonstrate that the photon multiplication efficiency is maintained up to solar fluence. Our results establish the solution-based SF-PM system as a simple and highly tunable platform to understand the dynamics of a triplet energy transfer process between organic semiconductors and QDs, one that can provide clear design rules for new materials.
RESUMEN
Harnessing the near-infrared (NIR) region of the electromagnetic spectrum is exceedingly important for photovoltaics, telecommunications, and the biomedical sciences. While thermally activated delayed fluorescent (TADF) materials have attracted much interest due to their intense luminescence and narrow exchange energies (ΔEST), they are still greatly inferior to conventional fluorescent dyes in the NIR, which precludes their application. This is because securing a sufficiently strong donor-acceptor (D-A) interaction for NIR emission alongside the narrow ΔEST required for TADF is highly challenging. Here, we demonstrate that by abandoning the common polydonor model in favor of a D-A dyad structure, a sufficiently strong D-A interaction can be obtained to realize a TADF emitter capable of photoluminescence (PL) close to 1000 nm. Electroluminescence (EL) at a peak wavelength of 904 nm is also reported. This strategy is both conceptually and synthetically simple and offers a new approach to the development of future NIR TADF materials.
RESUMEN
Singlet fission in organic semiconductors causes a singlet exciton to decay into a pair of triplet excitons and holds potential for increasing the efficiency of photovoltaic devices. In this combined experimental and theoretical study, we reveal that a covalent dimer of the organic semiconductor tetracene undergoes activated singlet fission by qualitatively different mechanisms depending on the solvent environment. We show that intramolecular vibrations are an integral part of this mechanism, giving rise to mixing between charge transfer and triplet pair excitations. Either coherent or incoherent singlet fission can occur, depending on the transient solvent-induced energetic proximity between the states, giving rise to complex variation of the singlet fission mechanism and time scale in the different environments. Our results suggest a more general principle for controlling the efficiency of photochemical reactions by utilizing transient interactions to tune the energetics of reactant and product states and switch between incoherent and coherent dynamics.
RESUMEN
CdSe/CdTe core-crown type-II nanoplatelet heterostructures are two-dimensional semiconductors that have attracted interest for use in light-emitting technologies due to their ease of fabrication, outstanding emission yields, and tunable properties. Despite this, the exciton dynamics of these complex materials, and in particular how they are influenced by phonons, is not yet well understood. Here, we use a combination of femtosecond vibrational spectroscopy, temperature-resolved photoluminescence (PL), and temperature-dependent structural measurements to investigate CdSe/CdTe nanoplatelets with a thickness of four monolayers. We show that charge-transfer (CT) excitons across the CdSe/CdTe interface are formed on two distinct time scales: initially from an ultrafast (â¼70 fs) electron transfer and then on longer time scales (â¼5 ps) from the diffusion of domain excitons to the interface. We find that the CT excitons are influenced by an interfacial phonon mode at â¼120 cm-1, which localizes them to the interface. Using low-temperature PL spectroscopy we reveal that this same phonon mode is the dominant mechanism in broadening the CT PL. On cooling to 4 K, the total PL quantum yield reaches close to unity, with an â¼85% contribution from CT emission and the remainder from an emissive sub-band-gap state. At room temperature, incomplete diffusion of domain excitons to the interface and scattering between CT excitons and phonons limit the PL quantum yield to â¼50%. Our results provide a detailed picture of the nature of exciton-phonon interactions at the interfaces of 2D heterostructures and explain both the broad shape of the CT PL spectrum and the origin of PL quantum yield losses. Furthermore, they suggest that to maximize the PL quantum yield both improved engineering of the interfacial crystal structure and diffusion of domain excitons to the interface, e.g., by altering the relative core/crown size, are required.
RESUMEN
Singlet fission offers the potential to overcome thermodynamic limits in solar cells by converting the energy of a single absorbed photon into two distinct triplet excitons. However, progress is limited by the small family of suitable materials, and new chromophore design principles are needed. Here, we experimentally vindicate the design concept of diradical stabilization in a tunable family of functionalized zethrenes. All molecules in the series exhibit rapid formation of a bound, spin-entangled triplet-pair state TT. It can be dissociated by thermally activated triplet hopping and exhibits surprisingly strong emission for an optically "dark" state, further enhanced with increasing diradical character. We find that the TT excited-state absorption spectral shape correlates with the binding energy between constituent triplets, providing a new tool to understand this unusual state. Our results reveal a versatile new family of tunable materials with excellent optical and photochemical properties for exploitation in singlet fission devices.
RESUMEN
We investigate the origin of the broadband visible emission in layered hybrid lead-halide perovskites and its connection with structural and photophysical properties. We study ⟨001⟩ oriented thin films of hexylammonium (HA) lead iodide, (C6H16N)2PbI4, and dodecylammonium (DA) lead iodide, (C12H28N)2PbI4, by combining first-principles simulations with time-resolved photoluminescence, steady-state absorption and X-ray diffraction measurements on cooling from 300 to 4 K. Ultrafast transient absorption and photoluminescence measurements are used to track the formation and recombination of emissive states. In addition to the excitonic photoluminescence near the absorption edge, we find a red-shifted, broadband (full-width at half-maximum of about 0.4 eV), emission band below 200 K, similar to emission from ⟨110⟩ oriented bromide 2D perovskites at room temperature. The lifetime of this sub-band-gap emission exceeds that of the excitonic transition by orders of magnitude. We use X-ray diffraction measurements to study the changes in crystal lattice with temperature. We report changes in the octahedral tilt and lattice spacing in both materials, together with a phase change around 200 K in DA2PbI4. DFT simulations of the HA2PbI4 crystal structure indicate that the low-energy emission is due to interstitial iodide and related Frenkel defects. Our results demonstrate that white-light emission is not limited to ⟨110⟩ oriented bromide 2D perovskites but a general property of this class of system, and highlight the importance of defect control for the formation of low-energy emissive sites, which can provide a pathway to design tailored white-light emitters.
RESUMEN
Metal halide perovskite crystal structures have emerged as a class of optoelectronic materials, which combine the ease of solution processability with excellent optical absorption and emission qualities. Restricting the physical dimensions of the perovskite crystallites to a few nanometers can also unlock spatial confinement effects, which allow large spectral tunability and high luminescence quantum yields at low excitation densities. However, the most promising perovskite structures rely on lead as a cationic species, thereby hindering commercial application. The replacement of lead with nontoxic alternatives such as tin has been demonstrated in bulk films, but not in spatially confined nanocrystals. Here, we synthesize CsSnX3 (X = Cl, Cl0.5Br0.5, Br, Br0.5I0.5, I) perovskite nanocrystals and provide evidence of their spectral tunability through both quantum confinement effects and control of the anionic composition. We show that luminescence from Sn-based perovskite nanocrystals occurs on pico- to nanosecond time scales via two spectrally distinct radiative decay processes, which we assign to band-to-band emission and radiative recombination at shallow intrinsic defect sites.