Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 77(2): 352-367.e8, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31759823

RESUMEN

cis-Regulatory communication is crucial in mammalian development and is thought to be restricted by the spatial partitioning of the genome in topologically associating domains (TADs). Here, we discovered that the Xist locus is regulated by sequences in the neighboring TAD. In particular, the promoter of the noncoding RNA Linx (LinxP) acts as a long-range silencer and influences the choice of X chromosome to be inactivated. This is independent of Linx transcription and independent of any effect on Tsix, the antisense regulator of Xist that shares the same TAD as Linx. Unlike Tsix, LinxP is well conserved across mammals, suggesting an ancestral mechanism for random monoallelic Xist regulation. When introduced in the same TAD as Xist, LinxP switches from a silencer to an enhancer. Our study uncovers an unsuspected regulatory axis for X chromosome inactivation and a class of cis-regulatory effects that may exploit TAD partitioning to modulate developmental decisions.


Asunto(s)
Secuencia Conservada/genética , ARN Largo no Codificante/genética , Cromosoma X/genética , Animales , Línea Celular , Elementos de Facilitación Genéticos/genética , Ratones , Regiones Promotoras Genéticas/genética , ARN sin Sentido/genética , Elementos Silenciadores Transcripcionales/genética , Transcripción Genética/genética
2.
PLoS Genet ; 18(7): e1010046, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35857787

RESUMEN

Recombinases RAD51 and its meiosis-specific paralog DMC1 accumulate on single-stranded DNA (ssDNA) of programmed DNA double strand breaks (DSBs) in meiosis. Here we used three-color dSTORM microscopy, and a mouse model with severe defects in meiotic DSB formation and synapsis (Hormad1-/-) to obtain more insight in the recombinase accumulation patterns in relation to repair progression. First, we used the known reduction in meiotic DSB frequency in Hormad1-/- spermatocytes to be able to conclude that the RAD51/DMC1 nanofoci that preferentially localize at distances of ~300 nm form within a single DSB site, whereas a second preferred distance of ~900 nm, observed only in wild type, represents inter-DSB distance. Next, we asked whether the proposed role of HORMAD1 in repair inhibition affects the RAD51/DMC1 accumulation patterns. We observed that the two most frequent recombinase configurations (1 DMC1 and 1 RAD51 nanofocus (D1R1), and D2R1) display coupled frequency dynamics over time in wild type, but were constant in the Hormad1-/- model, indicating that the lifetime of these intermediates was altered. Recombinase nanofoci were also smaller in Hormad1-/- spermatocytes, consistent with changes in ssDNA length or protein accumulation. Furthermore, we established that upon synapsis, recombinase nanofoci localized closer to the synaptonemal complex (SYCP3), in both wild type and Hormad1-/- spermatocytes. Finally, the data also revealed a hitherto unknown function of HORMAD1 in inhibiting coil formation in the synaptonemal complex. SPO11 plays a similar but weaker role in coiling and SYCP1 had the opposite effect. Using this large super-resolution dataset, we propose models with the D1R1 configuration representing one DSB end containing recombinases, and the other end bound by other ssDNA binding proteins, or both ends loaded by the two recombinases, but in below-resolution proximity. This may then often evolve into D2R1, then D1R2, and finally back to D1R1, when DNA synthesis has commenced.


Asunto(s)
Proteínas de Ciclo Celular , Espermatocitos , Complejo Sinaptonémico , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN/metabolismo , Masculino , Meiosis/genética , Ratones , Ratones Noqueados , Microscopía , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Recombinasas/genética , Recombinasas/metabolismo , Espermatocitos/metabolismo , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/metabolismo
3.
Hum Genomics ; 17(1): 37, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37098643

RESUMEN

Myelodysplastic syndromes (MDS) consist of a group of hematological malignancies characterized by ineffective hematopoiesis, cytogenetic abnormalities, and often a high risk of transformation to acute myeloid leukemia (AML). So far, there have been only a very limited number of studies assessing the epigenetics component contributing to the pathophysiology of these disorders, but not a single study assessing this at a genome-wide level. Here, we implemented a generic high throughput epigenomics approach, using methylated DNA sequencing (MeD-seq) of LpnPI digested fragments to identify potential epigenomic targets associated with MDS subtypes. Our results highlighted that PCDHG and ZNF gene families harbor potential epigenomic targets, which have been shown to be differentially methylated in a variety of comparisons between different MDS subtypes. Specifically, CpG islands, transcription start sites and post-transcriptional start sites within ZNF124, ZNF497 and PCDHG family are differentially methylated with fold change above 3,5. Overall, these findings highlight important aspects of the epigenomic component of MDS syndromes pathogenesis and the pharmacoepigenomic basis to the hypomethylating agents drug treatment response, while this generic high throughput whole epigenome sequencing approach could be readily implemented to other genetic diseases with a strong epigenetic component.


Asunto(s)
Metilación de ADN , Síndromes Mielodisplásicos , Humanos , Metilación de ADN/genética , Epigenómica , Epigénesis Genética , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Progresión de la Enfermedad , Islas de CpG/genética , Proteínas de Unión al ADN/genética
4.
Transpl Int ; 37: 12468, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699175

RESUMEN

Kidney organoids are an innovative tool in transplantation research. The aim of the present study was to investigate whether kidney organoids are susceptible for allo-immune attack and whether they can be used as a model to study allo-immunity in kidney transplantation. Human induced pluripotent stem cell-derived kidney organoids were co-cultured with human peripheral blood mononuclear cells (PBMC), which resulted in invasion of allogeneic T-cells around nephron structures and macrophages in the stromal cell compartment of the organoids. This process was associated with the induction of fibrosis. Subcutaneous implantation of kidney organoids in immune-deficient mice followed by adoptive transfer of human PBMC led to the invasion of diverse T-cell subsets. Single cell transcriptomic analysis revealed that stromal cells in the organoids upregulated expression of immune response genes upon immune cell invasion. Moreover, immune regulatory PD-L1 protein was elevated in epithelial cells while genes related to nephron differentiation and function were downregulated. This study characterized the interaction between immune cells and kidney organoids, which will advance the use of kidney organoids for transplantation research.


Asunto(s)
Trasplante de Riñón , Riñón , Organoides , Humanos , Organoides/inmunología , Animales , Riñón/inmunología , Ratones , Técnicas de Cocultivo , Leucocitos Mononucleares/inmunología , Células Madre Pluripotentes Inducidas/citología , Linfocitos T/inmunología , Sistema Inmunológico , Antígeno B7-H1/metabolismo , Macrófagos/inmunología
5.
Cell ; 139(5): 999-1011, 2009 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-19945382

RESUMEN

In somatic cells of female placental mammals, one X chromosome is inactivated to minimize sex-related dosage differences of X-encoded genes. Random X chromosome inactivation (XCI) in the embryo is a stochastic process, in which each X has an independent probability to initiate XCI, triggered by the nuclear concentration of one or more X-encoded XCI-activators. Here, we identify the E3 ubiquitin ligase RNF12 as an important XCI-activator. Additional copies of mouse Rnf12 or human RNF12 result in initiation of XCI in male mouse ES cells and on both X chromosomes in a substantial percentage of female mouse ES cells. This activity is dependent on an intact open reading frame of Rnf12 and correlates with the transgenic expression level of RNF12. Initiation of XCI is markedly reduced in differentiating female heterozygous Rnf12(+/-) ES cells. These findings provide evidence for a dose-dependent role of RNF12 in the XCI counting and initiation process.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas Represoras/metabolismo , Inactivación del Cromosoma X , Animales , Embrión de Mamíferos/metabolismo , Femenino , Humanos , Masculino , Ratones , Secuencias Reguladoras de Ácidos Nucleicos , Ubiquitina-Proteína Ligasas
6.
Stem Cells ; 40(6): 577-591, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35524742

RESUMEN

Induced pluripotent stem cell (iPSC)-derived kidney organoids are a potential tool for the regeneration of kidney tissue. They represent an early stage of nephrogenesis and have been shown to successfsully vascularize and mature further in vivo. However, there are concerns regarding the long-term safety and stability of iPSC derivatives. Specifically, the potential for tumorigenesis may impede the road to clinical application. To study safety and stability of kidney organoids, we analyzed their potential for malignant transformation in a teratoma assay and following long-term subcutaneous implantation in an immune-deficient mouse model. We did not detect fully functional residual iPSCs in the kidney organoids as analyzed by gene expression analysis, single-cell sequencing and immunohistochemistry. Accordingly, kidney organoids failed to form teratoma. Upon long-term subcutaneous implantation of whole organoids in immunodeficient IL2Ry-/-RAG2-/- mice, we observed tumor formation in 5 out of 103 implanted kidney organoids. These tumors were composed of WT1+CD56+ immature blastemal cells and showed histological resemblance with Wilms tumor. No genetic changes were identified that contributed to the occurrence of tumorigenic cells within the kidney organoids. However, assessment of epigenetic changes revealed a unique cluster of differentially methylated genes that were also present in undifferentiated iPSCs. We discovered that kidney organoids have the capacity to form tumors upon long-term implantation. The presence of epigenetic modifications combined with the lack of environmental cues may have caused an arrest in terminal differentiation. Our results indicate that the safe implementation of kidney organoids should exclude the presence of pro-tumorigenic methylation in kidney organoids.


Asunto(s)
Células Madre Pluripotentes Inducidas , Teratoma , Animales , Diferenciación Celular , Células Madre Pluripotentes Inducidas/metabolismo , Riñón/patología , Ratones , Organogénesis , Organoides/metabolismo , Teratoma/patología
7.
Cell ; 132(3): 410-21, 2008 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-18267073

RESUMEN

Female mammalian cells achieve dosage compensation of X-encoded genes by X chromosome inactivation (XCI). This process is thought to involve X chromosome counting and choice. To explore how this process is initiated, we analyzed XCI in tetraploid XXXX, XXXY, and XXYY embryonic stem cells and found that every X chromosome within a single nucleus has an independent probability to initiate XCI. This finding suggests a stochastic mechanism directing XCI counting and choice. The probability is directly proportional to the X chromosome:ploidy ratio, indicating the presence of an X-encoded activator of XCI, that itself is inactivated by the XCI process. Deletion of a region including Xist, Tsix, and Xite still results in XCI on the remaining wild-type X chromosome in female cells. This result supports a stochastic model in which each X chromosome in a nucleus initiates XCI independently and positions an X-encoded trans-acting XCI-activator outside the deleted region.


Asunto(s)
Genes Ligados a X , Inactivación del Cromosoma X , Cromosoma X/metabolismo , Animales , Diferenciación Celular , Línea Celular , Diploidia , Células Madre Embrionarias , Epigénesis Genética , Femenino , Hibridación Fluorescente in Situ , Masculino , Ratones , Poliploidía , Probabilidad , ARN Largo no Codificante , ARN no Traducido/genética , Elementos Reguladores de la Transcripción , Eliminación de Secuencia , Procesos Estocásticos
8.
PLoS Pathog ; 16(6): e1008555, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32579593

RESUMEN

Exhaustion is a dysfunctional state of cytotoxic CD8+ T cells (CTL) observed in chronic infection and cancer. Current in vivo models of CTL exhaustion using chronic viral infections or cancer yield very few exhausted CTL, limiting the analysis that can be done on these cells. Establishing an in vitro system that rapidly induces CTL exhaustion would therefore greatly facilitate the study of this phenotype, identify the truly exhaustion-associated changes and allow the testing of novel approaches to reverse or prevent exhaustion. Here we show that repeat stimulation of purified TCR transgenic OT-I CTL with their specific peptide induces all the functional (reduced cytokine production and polyfunctionality, decreased in vivo expansion capacity) and phenotypic (increased inhibitory receptors expression and transcription factor changes) characteristics of exhaustion. Importantly, in vitro exhausted cells shared the transcriptomic characteristics of the gold standard of exhaustion, CTL from LCMV cl13 infections. Gene expression of both in vitro and in vivo exhausted CTL was distinct from T cell anergy. Using this system, we show that Tcf7 promoter DNA methylation contributes to TCF1 downregulation in exhausted CTL. Thus this novel in vitro system can be used to identify genes and signaling pathways involved in exhaustion and will facilitate the screening of reagents that prevent/reverse CTL exhaustion.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Metilación de ADN/inmunología , Factor Nuclear 1-alfa del Hepatocito/inmunología , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Regiones Promotoras Genéticas/inmunología , Animales , Linfocitos T CD8-positivos/patología , Factor Nuclear 1-alfa del Hepatocito/genética , Coriomeningitis Linfocítica/genética , Coriomeningitis Linfocítica/patología , Virus de la Coriomeningitis Linfocítica/genética , Ratones , Ratones Transgénicos , Transducción de Señal/genética , Transducción de Señal/inmunología
9.
Mol Cell ; 53(6): 965-78, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24613346

RESUMEN

X chromosome inactivation (XCI) in female placental mammals is a vital mechanism for dosage compensation between X-linked and autosomal genes. XCI starts with activation of Xist and silencing of the negative regulator Tsix, followed by cis spreading of Xist RNA over the future inactive X chromosome (Xi). Here, we show that XCI does not require physical contact between the two X chromosomes (X-pairing) but is regulated by trans-acting diffusible factors. We found that the X-encoded trans-acting and dose-dependent XCI-activator RNF12 acts in concert with the cis-regulatory region containing Jpx, Ftx, and Xpr to activate Xist and to overcome repression by Tsix. RNF12 acts at two subsequent steps; two active copies of Rnf12 drive initiation of XCI, and one copy needs to remain active to maintain XCI toward establishment of the Xi. This two-step mechanism ensures that XCI is very robust and fine-tuned, preventing XCI of both X chromosomes.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , ARN Largo no Codificante/genética , Ubiquitina-Proteína Ligasas/genética , Inactivación del Cromosoma X , Cromosoma X , Animales , Transporte Biológico , Línea Celular , Emparejamiento Cromosómico , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Humanos , Ratones Noqueados , ARN Largo no Codificante/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo
10.
Kidney Int ; 99(1): 134-147, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32918942

RESUMEN

Renin production by the kidney is of vital importance for salt, volume, and blood pressure homeostasis. The lack of human models hampers investigation into the regulation of renin and its relevance for kidney physiology. To develop such a model, we used human induced pluripotent stem cell-derived kidney organoids to study the role of renin and the renin-angiotensin system in the kidney. Extensive characterization of the kidney organoids revealed kidney-specific cell populations consisting of podocytes, proximal and distal tubular cells, stromal cells and endothelial cells. We examined the presence of various components of the renin-angiotensin system such as angiotensin II receptors, angiotensinogen, and angiotensin-converting enzymes 1 and 2. We identified by single-cell sequencing, immunohistochemistry, and functional assays that cyclic AMP stimulation induces a subset of pericytes to increase the synthesis and secretion of enzymatically active renin. Renin production by the organoids was responsive to regulation by parathyroid hormone. Subcutaneously implanted kidney organoids in immunodeficient IL2Ry-/-Rag2-/- mice were successfully vascularized, maintained tubular and glomerular structures, and retained capacity to produce renin two months after implantation. Thus, our results demonstrate that kidney organoids express renin and provide insights into the endocrine potential of human kidney organoids, which is important for regenerative medicine in the context of the endocrine system.


Asunto(s)
Células Madre Pluripotentes Inducidas , Renina , Angiotensina II/metabolismo , Angiotensinógeno/metabolismo , Animales , Células Endoteliales/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Riñón/metabolismo , Ratones , Organoides/metabolismo , Renina/metabolismo , Sistema Renina-Angiotensina
11.
Genome Res ; 28(1): 88-99, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29222086

RESUMEN

DNA methylation is a well-known epigenetic modification that plays a crucial role in gene regulation, but genome-wide analysis of DNA methylation remains technically challenging and costly. DNA methylation-dependent restriction enzymes can be used to restrict CpG methylation analysis to methylated regions of the genome only, which significantly reduces the required sequencing depth and simplifies subsequent bioinformatics analysis. Unfortunately, this approach has been hampered by complete digestion of DNA in CpG methylation-dense regions, resulting in fragments that are too small for accurate mapping. Here, we show that the activity of DNA methylation-dependent enzyme, LpnPI, is blocked by a fragment size smaller than 32 bp. This unique property prevents complete digestion of methylation-dense DNA and allows accurate genome-wide analysis of CpG methylation at single-nucleotide resolution. Methylated DNA sequencing (MeD-seq) of LpnPI digested fragments revealed highly reproducible genome-wide CpG methylation profiles for >50% of all potentially methylated CpGs, at a sequencing depth less than one-tenth required for whole-genome bisulfite sequencing (WGBS). MeD-seq identified a high number of patient and tissue-specific differential methylated regions (DMRs) and revealed that patient-specific DMRs observed in both blood and buccal samples predict DNA methylation in other tissues and organs. We also observed highly variable DNA methylation at gene promoters on the inactive X Chromosome, indicating tissue-specific and interpatient-specific escape of X Chromosome inactivation. These findings highlight the potential of MeD-seq for high-throughput epigenetic profiling.


Asunto(s)
Cromosomas Humanos X , Islas de CpG , Metilación de ADN/fisiología , Desoxirribonucleasa I/química , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Inactivación del Cromosoma X , Cromosomas Humanos X/química , Cromosomas Humanos X/genética , Cromosomas Humanos X/metabolismo , Femenino , Humanos
12.
Genome Res ; 28(6): 800-811, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29735606

RESUMEN

DNA replication occurs in a defined temporal order known as the replication-timing (RT) program. RT is regulated during development in discrete chromosomal units, coordinated with transcriptional activity and 3D genome organization. Here, we derived distinct cell types from F1 hybrid musculus × castaneus mouse crosses and exploited the high single-nucleotide polymorphism (SNP) density to characterize allelic differences in RT (Repli-seq), genome organization (Hi-C and promoter-capture Hi-C), gene expression (total nuclear RNA-seq), and chromatin accessibility (ATAC-seq). We also present HARP, a new computational tool for sorting SNPs in phased genomes to efficiently measure allele-specific genome-wide data. Analysis of six different hybrid mESC clones with different genomes (C57BL/6, 129/sv, and CAST/Ei), parental configurations, and gender revealed significant RT asynchrony between alleles across ∼12% of the autosomal genome linked to subspecies genomes but not to parental origin, growth conditions, or gender. RT asynchrony in mESCs strongly correlated with changes in Hi-C compartments between alleles but not as strongly with SNP density, gene expression, imprinting, or chromatin accessibility. We then tracked mESC RT asynchronous regions during development by analyzing differentiated cell types, including extraembryonic endoderm stem (XEN) cells, four male and female primary mouse embryonic fibroblasts (MEFs), and neural precursor cells (NPCs) differentiated in vitro from mESCs with opposite parental configurations. We found that RT asynchrony and allelic discordance in Hi-C compartments seen in mESCs were largely lost in all differentiated cell types, accompanied by novel sites of allelic asynchrony at a considerably smaller proportion of the genome, suggesting that genome organization of homologs converges to similar folding patterns during cell fate commitment.


Asunto(s)
Momento de Replicación del ADN/genética , Replicación del ADN/genética , Genoma/genética , Células-Madre Neurales/citología , Alelos , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Femenino , Fibroblastos/citología , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Células Madre Embrionarias de Ratones/citología , Regiones Promotoras Genéticas
13.
Proc Natl Acad Sci U S A ; 115(14): 3680-3685, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29563231

RESUMEN

Discovering the genetic changes underlying species differences is a central goal in evolutionary genetics. However, hybrid crosses between species in mammals often suffer from hybrid sterility, greatly complicating genetic mapping of trait variation across species. Here, we describe a simple, robust, and transgene-free technique to generate "in vitro crosses" in hybrid mouse embryonic stem (ES) cells by inducing random mitotic cross-overs with the drug ML216, which inhibits the DNA helicase Bloom syndrome (BLM). Starting with an interspecific F1 hybrid ES cell line between the Mus musculus laboratory mouse and Mus spretus (∼1.5 million years of divergence), we mapped the genetic basis of drug resistance to the antimetabolite tioguanine to a single region containing hypoxanthine-guanine phosphoribosyltransferase (Hprt) in as few as 21 d through "flow mapping" by coupling in vitro crosses with fluorescence-activated cell sorting (FACS). We also show how our platform can enable direct study of developmental variation by rederiving embryos with contribution from the recombinant ES cell lines. We demonstrate how in vitro crosses can overcome major bottlenecks in mouse complex trait genetics and address fundamental questions in evolutionary biology that are otherwise intractable through traditional breeding due to high cost, small litter sizes, and/or hybrid sterility. In doing so, we describe an experimental platform toward studying evolutionary systems biology in mouse and potentially in human and other mammals, including cross-species hybrids.


Asunto(s)
Cruzamientos Genéticos , Células Madre Embrionarias de Ratones/citología , Sitios de Carácter Cuantitativo , Animales , Antimetabolitos Antineoplásicos/farmacología , Evolución Biológica , Células Cultivadas , Mapeo Cromosómico , Resistencia a Medicamentos/genética , Femenino , Hibridación Genética , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/efectos de los fármacos , Células Madre Embrionarias de Ratones/metabolismo , Fenotipo , Embarazo , RecQ Helicasas/antagonistas & inhibidores , Especificidad de la Especie , Tioguanina/farmacología
14.
Trends Biochem Sci ; 41(2): 138-147, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26796628

RESUMEN

X chromosome inactivation (XCI) is a mammalian-specific process initiated in all female cells, leading to one inactivated X chromosome. The robust nature of XCI, and the complex mechanisms involved in directing this process, makes XCI an important model system to study all aspects of gene regulation. XCI is divided into distinct phases: initiation, establishment, and maintenance of the inactive X (Xi). Recent studies shed important new light on the mechanisms directing all three phases of XCI. These findings include new regulatory pathways in XCI initiation, and the identification of a plethora of new factors involved in establishing and maintaining the Xi. In this review, we will highlight and discuss these new findings in the bigger picture of XCI.


Asunto(s)
Inactivación del Cromosoma X , Animales , Femenino , Humanos , Masculino
15.
Mol Psychiatry ; 24(5): 757-771, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-29302076

RESUMEN

Schizophrenia is highly heritable, yet its underlying pathophysiology remains largely unknown. Among the most well-replicated findings in neurobiological studies of schizophrenia are deficits in myelination and white matter integrity; however, direct etiological genetic and cellular evidence has thus far been lacking. Here, we implement a family-based approach for genetic discovery in schizophrenia combined with functional analysis using induced pluripotent stem cells (iPSCs). We observed familial segregation of two rare missense mutations in Chondroitin Sulfate Proteoglycan 4 (CSPG4) (c.391G > A [p.A131T], MAF 7.79 × 10-5 and c.2702T > G [p.V901G], MAF 2.51 × 10-3). The CSPG4A131T mutation was absent from the Swedish Schizophrenia Exome Sequencing Study (2536 cases, 2543 controls), while the CSPG4V901G mutation was nominally enriched in cases (11 cases vs. 3 controls, P = 0.026, OR 3.77, 95% CI 1.05-13.52). CSPG4/NG2 is a hallmark protein of oligodendrocyte progenitor cells (OPCs). iPSC-derived OPCs from CSPG4A131T mutation carriers exhibited abnormal post-translational processing (P = 0.029), subcellular localization of mutant NG2 (P = 0.007), as well as aberrant cellular morphology (P = 3.0 × 10-8), viability (P = 8.9 × 10-7), and myelination potential (P = 0.038). Moreover, transfection of healthy non-carrier sibling OPCs confirmed a pathogenic effect on cell survival of both the CSPG4A131T (P = 0.006) and CSPG4V901G (P = 3.4 × 10-4) mutations. Finally, in vivo diffusion tensor imaging of CSPG4A131T mutation carriers demonstrated a reduction of brain white matter integrity compared to unaffected sibling and matched general population controls (P = 2.2 × 10-5). Together, our findings provide a convergence of genetic and functional evidence to implicate OPC dysfunction as a candidate pathophysiological mechanism of familial schizophrenia.


Asunto(s)
Proteoglicanos Tipo Condroitín Sulfato/genética , Proteínas de la Membrana/genética , Células Precursoras de Oligodendrocitos/metabolismo , Esquizofrenia/genética , Adulto , Antígenos/genética , Diferenciación Celular/fisiología , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Imagen de Difusión Tensora , Familia , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Mutación/genética , Células Precursoras de Oligodendrocitos/fisiología , Oligodendroglía/metabolismo , Linaje , Proteoglicanos/genética , Esquizofrenia/metabolismo , Sustancia Blanca/metabolismo
16.
Mol Psychiatry ; 24(11): 1748-1768, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-29728705

RESUMEN

RLIM, also known as RNF12, is an X-linked E3 ubiquitin ligase acting as a negative regulator of LIM-domain containing transcription factors and participates in X-chromosome inactivation (XCI) in mice. We report the genetic and clinical findings of 84 individuals from nine unrelated families, eight of whom who have pathogenic variants in RLIM (RING finger LIM domain-interacting protein). A total of 40 affected males have X-linked intellectual disability (XLID) and variable behavioral anomalies with or without congenital malformations. In contrast, 44 heterozygous female carriers have normal cognition and behavior, but eight showed mild physical features. All RLIM variants identified are missense changes co-segregating with the phenotype and predicted to affect protein function. Eight of the nine altered amino acids are conserved and lie either within a domain essential for binding interacting proteins or in the C-terminal RING finger catalytic domain. In vitro experiments revealed that these amino acid changes in the RLIM RING finger impaired RLIM ubiquitin ligase activity. In vivo experiments in rlim mutant zebrafish showed that wild type RLIM rescued the zebrafish rlim phenotype, whereas the patient-specific missense RLIM variants failed to rescue the phenotype and thus represent likely severe loss-of-function mutations. In summary, we identified a spectrum of RLIM missense variants causing syndromic XLID and affecting the ubiquitin ligase activity of RLIM, suggesting that enzymatic activity of RLIM is required for normal development, cognition and behavior.


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Adolescente , Adulto , Animales , Niño , Preescolar , Trastorno de la Conducta/genética , Femenino , Genes Ligados a X , Células HEK293 , Humanos , Recién Nacido , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Ratones , Persona de Mediana Edad , Mutación , Linaje , Factores de Transcripción/genética , Ubiquitinación , Inactivación del Cromosoma X , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
17.
Mol Cell ; 46(5): 650-61, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22560923

RESUMEN

TGF-ß members are of key importance during embryogenesis and tissue homeostasis. Smad7 is a potent antagonist of TGF-ß family/Smad-mediated responses, but the regulation of Smad7 activity is not well understood. We identified the RING domain-containing E3 ligase RNF12 as a critical component of TGF-ß signaling. Depletion of RNF12 dramatically reduced TGF-ß/Smad-induced effects in mammalian cells, whereas ectopic expression of RNF12 strongly enhanced these responses. RNF12 specifically binds to Smad7 and induces its polyubiquitination and degradation. Smad7 levels were increased in RNF12-deficient mouse embryonic stem cells, resulting in mitigation of both BMP-mediated repression of neural induction and activin-induced anterior mesoderm formation. RNF12 also antagonized Smad7 during Nodal-dependent and BMP-dependent signaling and morphogenic events in early zebrafish embryos. The gastrulation defects induced by ectopic and depleted Smad7 were rescued in part by RNF12 gain and loss of function, respectively. These findings demonstrate that RNF12 plays a critical role in TGF-ß family signaling.


Asunto(s)
Embrión no Mamífero/citología , Células Madre Embrionarias/citología , Proteína smad7/metabolismo , Ubiquitina-Proteína Ligasas/fisiología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Diferenciación Celular/genética , Embrión no Mamífero/metabolismo , Células Madre Embrionarias/metabolismo , Gastrulación/genética , Humanos , Células Jurkat , Ratones , Proteolisis , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Pez Cebra/genética
18.
Am J Physiol Renal Physiol ; 316(1): F204-F213, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30403162

RESUMEN

In autosomal dominant polycystic kidney disease (ADPKD) paracrine signaling molecules in cyst fluid can induce proliferation and cystogenesis of neighboring renal epithelial cells. However, the identity of this cyst-inducing factor is still unknown. The aim of this study was to identify paracrine signaling proteins in cyst fluid using a 3D in vitro cystogenesis assay. We collected cyst fluid from 15 ADPKD patients who underwent kidney or liver resection (55 cysts from 13 nephrectomies, 5 cysts from 2 liver resections). For each sample, the ability to induce proliferation and cyst formation was tested using the cystogenesis assay (RPTEC/TERT1 cells in Matrigel with cyst fluid added for 14 days). Kidney cyst fluid induced proliferation and cyst growth of renal epithelial cells in a dose-dependent fashion. Liver cyst fluid also induced cystogenesis. Using size exclusion chromatography, 56 cyst fluid fractions were obtained of which only the fractions between 30 and 100 kDa showed cystogenic potential. Mass spectrometry analysis of samples that tested positive or negative in the assay identified 43 candidate cystogenic proteins. Gene ontology analysis showed an enrichment for proteins classified as enzymes, immunity proteins, receptors, and signaling proteins. A number of these proteins have previously been implicated in ADPKD, including secreted frizzled-related protein 4, S100A8, osteopontin, and cysteine rich with EGF-like domains 1. In conclusion, both kidney and liver cyst fluids contain paracrine signaling molecules that drive cyst formation. Using size exclusion chromatography and mass spectrometry, we procured a candidate list for future studies. Ultimately, cystogenic paracrine signaling molecules may be targeted to abrogate cystogenesis in ADPKD.


Asunto(s)
Proliferación Celular , Líquido Quístico/metabolismo , Quistes/metabolismo , Células Epiteliales/metabolismo , Túbulos Renales Proximales/metabolismo , Hepatopatías/metabolismo , Comunicación Paracrina , Riñón Poliquístico Autosómico Dominante/metabolismo , Transducción de Señal , Adulto , Anciano , Línea Celular , Cromatografía en Gel , Quistes/patología , Células Epiteliales/patología , Femenino , Humanos , Túbulos Renales Proximales/patología , Hepatopatías/patología , Masculino , Persona de Mediana Edad , Riñón Poliquístico Autosómico Dominante/patología , Proteómica/métodos , Espectrometría de Masas en Tándem
19.
Genome Res ; 26(9): 1202-10, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27510564

RESUMEN

The X and Y sex chromosomes of placental mammals show hallmarks of a tumultuous evolutionary past. The X Chromosome has a rich and conserved gene content, while the Y Chromosome has lost most of its genes. In the Transcaucasian mole vole Ellobius lutescens, the Y Chromosome including Sry has been lost, and both females and males have a 17,X diploid karyotype. Similarly, the closely related Ellobius talpinus, has a 54,XX karyotype in both females and males. Here, we report the sequencing and assembly of the E. lutescens and E. talpinus genomes. The results indicate that the loss of the Y Chromosome in E. lutescens and E. talpinus occurred in two independent events. Four functional homologs of mouse Y-Chromosomal genes were detected in both female and male E. lutescens, of which three were also detected in the E. talpinus genome. One of these is Eif2s3y, known as the only Y-derived gene that is crucial for successful male meiosis. Female and male E. lutescens can carry one and the same X Chromosome with a largely conserved gene content, including all genes known to function in X Chromosome inactivation. The availability of the genomes of these mole vole species provides unique models to study the dynamics of sex chromosome evolution.


Asunto(s)
Cromosomas Sexuales/genética , Procesos de Determinación del Sexo/genética , Cromosoma X/genética , Cromosoma Y/genética , Animales , Arvicolinae/genética , Cromosomas de los Mamíferos/genética , Femenino , Cariotipificación , Masculino , Mamíferos/genética , Ratones
20.
PLoS Genet ; 12(10): e1006358, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27716834

RESUMEN

In mouse female preimplantation embryos, the paternal X chromosome (Xp) is silenced by imprinted X chromosome inactivation (iXCI). This requires production of the noncoding Xist RNA in cis, from the Xp. The Xist locus on the maternally inherited X chromosome (Xm) is refractory to activation due to the presence of an imprint. Paternal inheritance of an Xist deletion (XpΔXist) is embryonic lethal to female embryos, due to iXCI abolishment. Here, we circumvented the histone-to-protamine and protamine-to-histone transitions of the paternal genome, by fertilization of oocytes via injection of round spermatids (ROSI). This did not affect initiation of XCI in wild type female embryos. Surprisingly, ROSI using ΔXist round spermatids allowed survival of female embryos. This was accompanied by activation of the intact maternal Xist gene, initiated with delayed kinetics, around the morula stage, resulting in Xm silencing. Maternal Xist gene activation was not observed in ROSI-derived males. In addition, no Xist expression was detected in male and female morulas that developed from oocytes fertilized with mature ΔXist sperm. Finally, the expression of the X-encoded XCI-activator RNF12 was enhanced in both male (wild type) and female (wild type as well as XpΔXist) ROSI derived embryos, compared to in vivo fertilized embryos. Thus, high RNF12 levels may contribute to the specific activation of maternal Xist in XpΔXist female ROSI embryos, but upregulation of additional Xp derived factors and/or the specific epigenetic constitution of the round spermatid-derived Xp are expected to be more critical. These results illustrate the profound impact of a dysregulated paternal epigenome on embryo development, and we propose that mouse ROSI can be used as a model to study the effects of intergenerational inheritance of epigenetic marks.


Asunto(s)
Desarrollo Embrionario/genética , Herencia Paterna/genética , ARN Largo no Codificante/genética , Inactivación del Cromosoma X/genética , Animales , Blastocisto , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Oocitos/crecimiento & desarrollo , Eliminación de Secuencia/genética , Espermátides/metabolismo , Cromosoma X/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA