Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 180(2): 278-295.e23, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31978345

RESUMEN

Mutations in FAMIN cause arthritis and inflammatory bowel disease in early childhood, and a common genetic variant increases the risk for Crohn's disease and leprosy. We developed an unbiased liquid chromatography-mass spectrometry screen for enzymatic activity of this orphan protein. We report that FAMIN phosphorolytically cleaves adenosine into adenine and ribose-1-phosphate. Such activity was considered absent from eukaryotic metabolism. FAMIN and its prokaryotic orthologs additionally have adenosine deaminase, purine nucleoside phosphorylase, and S-methyl-5'-thioadenosine phosphorylase activity, hence, combine activities of the namesake enzymes of central purine metabolism. FAMIN enables in macrophages a purine nucleotide cycle (PNC) between adenosine and inosine monophosphate and adenylosuccinate, which consumes aspartate and releases fumarate in a manner involving fatty acid oxidation and ATP-citrate lyase activity. This macrophage PNC synchronizes mitochondrial activity with glycolysis by balancing electron transfer to mitochondria, thereby supporting glycolytic activity and promoting oxidative phosphorylation and mitochondrial H+ and phosphate recycling.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Adenina/metabolismo , Adenosina/metabolismo , Adenosina Desaminasa/metabolismo , Cromatografía Liquida/métodos , Células HEK293 , Células Hep G2 , Humanos , Péptidos y Proteínas de Señalización Intracelular/fisiología , Espectrometría de Masas/métodos , Enzimas Multifuncionales/genética , Fosforilación , Proteínas/genética , Nucleótidos de Purina/metabolismo , Purinas/metabolismo
3.
FASEB J ; 38(6): e23505, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38507255

RESUMEN

Aortic stenosis (AS) and hypertrophic cardiomyopathy (HCM) are distinct disorders leading to left ventricular hypertrophy (LVH), but whether cardiac metabolism substantially differs between these in humans remains to be elucidated. We undertook an invasive (aortic root, coronary sinus) metabolic profiling in patients with severe AS and HCM in comparison with non-LVH controls to investigate cardiac fuel selection and metabolic remodeling. These patients were assessed under different physiological states (at rest, during stress induced by pacing). The identified changes in the metabolome were further validated by metabolomic and orthogonal transcriptomic analysis, in separately recruited patient cohorts. We identified a highly discriminant metabolomic signature in severe AS in all samples, regardless of sampling site, characterized by striking accumulation of long-chain acylcarnitines, intermediates of fatty acid transport across the inner mitochondrial membrane, and validated this in a separate cohort. Mechanistically, we identify a downregulation in the PPAR-α transcriptional network, including expression of genes regulating fatty acid oxidation (FAO). In silico modeling of ß-oxidation demonstrated that flux could be inhibited by both the accumulation of fatty acids as a substrate for mitochondria and the accumulation of medium-chain carnitines which induce competitive inhibition of the acyl-CoA dehydrogenases. We present a comprehensive analysis of changes in the metabolic pathways (transcriptome to metabolome) in severe AS, and its comparison to HCM. Our results demonstrate a progressive impairment of ß-oxidation from HCM to AS, particularly for FAO of long-chain fatty acids, and that the PPAR-α signaling network may be a specific metabolic therapeutic target in AS.


Asunto(s)
Estenosis de la Válvula Aórtica , Cardiomiopatía Hipertrófica , Humanos , Receptores Activados del Proliferador del Peroxisoma , Cardiomiopatía Hipertrófica/genética , Hipertrofia Ventricular Izquierda/genética , Estenosis de la Válvula Aórtica/genética , Ácidos Grasos/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(43): e2206083119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36269859

RESUMEN

Genome-wide association studies (GWASs) have identified genetic loci associated with the risk of Alzheimer's disease (AD), but the molecular mechanisms by which they confer risk are largely unknown. We conducted a metabolome-wide association study (MWAS) of AD-associated loci from GWASs using untargeted metabolic profiling (metabolomics) by ultraperformance liquid chromatography-mass spectrometry (UPLC-MS). We identified an association of lactosylceramides (LacCer) with AD-related single-nucleotide polymorphisms (SNPs) in ABCA7 (P = 5.0 × 10-5 to 1.3 × 10-44). We showed that plasma LacCer concentrations are associated with cognitive performance and genetically modified levels of LacCer are associated with AD risk. We then showed that concentrations of sphingomyelins, ceramides, and hexosylceramides were altered in brain tissue from Abca7 knockout mice, compared with wild type (WT) (P = 0.049-1.4 × 10-5), but not in a mouse model of amyloidosis. Furthermore, activation of microglia increases intracellular concentrations of hexosylceramides in part through induction in the expression of sphingosine kinase, an enzyme with a high control coefficient for sphingolipid and ceramide synthesis. Our work suggests that the risk for AD arising from functional variations in ABCA7 is mediated at least in part through ceramides. Modulation of their metabolism or downstream signaling may offer new therapeutic opportunities for AD.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Enfermedad de Alzheimer , Ceramidas , Animales , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Ceramidas/metabolismo , Cromatografía Liquida , Estudio de Asociación del Genoma Completo , Lactosilceramidos , Metaboloma , Ratones Noqueados , Esfingomielinas , Espectrometría de Masas en Tándem
5.
Circulation ; 147(22): 1654-1669, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37070436

RESUMEN

BACKGROUND: Sodium-glucose co-transporter 2 inhibitors (SGLT2i) have emerged as a paramount treatment for patients with heart failure (HF), irrespective of underlying reduced or preserved ejection fraction. However, a definite cardiac mechanism of action remains elusive. Derangements in myocardial energy metabolism are detectable in all HF phenotypes, and it was proposed that SGLT2i may improve energy production. The authors aimed to investigate whether treatment with empagliflozin leads to changes in myocardial energetics, serum metabolomics, and cardiorespiratory fitness. METHODS: EMPA-VISION (Assessment of Cardiac Energy Metabolism, Function and Physiology in Patients With Heart Failure Taking Empagliflozin) is a prospective, randomized, double-blind, placebo-controlled, mechanistic trial that enrolled 72 symptomatic patients with chronic HF with reduced ejection fraction (HFrEF; n=36; left ventricular ejection fraction ≤40%; New York Heart Association class ≥II; NT-proBNP [N-terminal pro-B-type natriuretic peptide] ≥125 pg/mL) and HF with preserved ejection fraction (HFpEF; n=36; left ventricular ejection fraction ≥50%; New York Heart Association class ≥II; NT-proBNP ≥125 pg/mL). Patients were stratified into respective cohorts (HFrEF versus HFpEF) and randomly assigned to empagliflozin (10 mg; n=35: 17 HFrEF and 18 HFpEF) or placebo (n=37: 19 HFrEF and 18 HFpEF) once daily for 12 weeks. The primary end point was a change in the cardiac phosphocreatine:ATP ratio (PCr/ATP) from baseline to week 12, determined by phosphorus magnetic resonance spectroscopy at rest and during peak dobutamine stress (65% of age-maximum heart rate). Mass spectrometry on a targeted set of 19 metabolites was performed at baseline and after treatment. Other exploratory end points were investigated. RESULTS: Empagliflozin treatment did not change cardiac energetics (ie, PCr/ATP) at rest in HFrEF (adjusted mean treatment difference [empagliflozin - placebo], -0.25 [95% CI, -0.58 to 0.09]; P=0.14) or HFpEF (adjusted mean treatment difference, -0.16 [95% CI, -0.60 to 0.29]; P=0.47]. Likewise, there were no changes in PCr/ATP during dobutamine stress in HFrEF (adjusted mean treatment difference, -0.13 [95% CI, -0.35 to 0.09]; P=0.23) or HFpEF (adjusted mean treatment difference, -0.22 [95% CI, -0.66 to 0.23]; P=0.32). No changes in serum metabolomics or levels of circulating ketone bodies were observed. CONCLUSIONS: In patients with either HFrEF or HFpEF, treatment with 10 mg of empagliflozin once daily for 12 weeks did not improve cardiac energetics or change circulating serum metabolites associated with energy metabolism when compared with placebo. Based on our results, it is unlikely that enhancing cardiac energy metabolism mediates the beneficial effects of SGLT2i in HF. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT03332212.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/tratamiento farmacológico , Volumen Sistólico , Función Ventricular Izquierda , Estudios Prospectivos , Dobutamina/farmacología , Metabolismo Energético , Adenosina Trifosfato
6.
Kidney Int ; 106(1): 85-97, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38431215

RESUMEN

Despite the recent advances in our understanding of the role of lipids, metabolites, and related enzymes in mediating kidney injury, there is limited integrated multi-omics data identifying potential metabolic pathways driving impaired kidney function. The limited availability of kidney biopsies from living donors with acute kidney injury has remained a major constraint. Here, we validated the use of deceased transplant donor kidneys as a good model to study acute kidney injury in humans and characterized these kidneys using imaging and multi-omics approaches. We noted consistent changes in kidney injury and inflammatory markers in donors with reduced kidney function. Neighborhood and correlation analyses of imaging mass cytometry data showed that subsets of kidney cells (proximal tubular cells and fibroblasts) are associated with the expression profile of kidney immune cells, potentially linking these cells to kidney inflammation. Integrated transcriptomic and metabolomic analysis of human kidneys showed that kidney arachidonic acid metabolism and seven other metabolic pathways were upregulated following diminished kidney function. To validate the arachidonic acid pathway in impaired kidney function we demonstrated increased levels of cytosolic phospholipase A2 protein and related lipid mediators (prostaglandin E2) in the injured kidneys. Further, inhibition of cytosolic phospholipase A2 reduced injury and inflammation in human kidney proximal tubular epithelial cells in vitro. Thus, our study identified cell types and metabolic pathways that may be critical for controlling inflammation associated with impaired kidney function in humans.


Asunto(s)
Lesión Renal Aguda , Fenotipo , Humanos , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/etiología , Masculino , Persona de Mediana Edad , Metabolómica/métodos , Femenino , Trasplante de Riñón/efectos adversos , Adulto , Citometría de Imagen/métodos , Riñón/patología , Riñón/metabolismo , Fosfolipasas A2/metabolismo , Ácido Araquidónico/metabolismo , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Transcriptoma , Dinoprostona/metabolismo , Dinoprostona/análisis , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Células Epiteliales/metabolismo , Células Epiteliales/patología , Biopsia , Multiómica
7.
Toxicol Appl Pharmacol ; 489: 116995, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38862081

RESUMEN

Identification of Endocrine-Disrupting Chemicals (EDCs) in a regulatory context requires a high level of evidence. However, lines of evidence (e.g. human, in vivo, in vitro or in silico) are heterogeneous and incomplete for quantifying evidence of the adverse effects and mechanisms involved. To date, for the regulatory appraisal of metabolism-disrupting chemicals (MDCs), no harmonised guidance to assess the weight of evidence has been developed at the EU or international level. To explore how to develop this, we applied a formal Expert Knowledge Elicitation (EKE) approach within the European GOLIATH project. EKE captures expert judgment in a quantitative manner and provides an estimate of uncertainty of the final opinion. As a proof of principle, we selected one suspected MDC -triphenyl phosphate (TPP) - based on its related adverse endpoints (obesity/adipogenicity) relevant to metabolic disruption and a putative Molecular Initiating Event (MIE): activation of peroxisome proliferator activated receptor gamma (PPARγ). We conducted a systematic literature review and assessed the quality of the lines of evidence with two independent groups of experts within GOLIATH, with the objective of categorising the metabolic disruption properties of TPP, by applying an EKE approach. Having followed the entire process separately, both groups arrived at the same conclusion, designating TPP as a "suspected MDC" with an overall quantitative agreement exceeding 85%, indicating robust reproducibility. The EKE method provides to be an important way to bring together scientists with diverse expertise and is recommended for future work in this area.


Asunto(s)
Disruptores Endocrinos , Organofosfatos , Animales , Humanos , Disruptores Endocrinos/toxicidad , Testimonio de Experto , Organofosfatos/toxicidad , PPAR gamma/metabolismo , PPAR gamma/agonistas , Medición de Riesgo
8.
PLoS Biol ; 19(12): e3001468, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34860829

RESUMEN

The structure of the metabolic network is highly conserved, but we know little about its evolutionary origins. Key for explaining the early evolution of metabolism is solving a chicken-egg dilemma, which describes that enzymes are made from the very same molecules they produce. The recent discovery of several nonenzymatic reaction sequences that topologically resemble central metabolism has provided experimental support for a "metabolism first" theory, in which at least part of the extant metabolic network emerged on the basis of nonenzymatic reactions. But how could evolution kick-start on the basis of a metal catalyzed reaction sequence, and how could the structure of nonenzymatic reaction sequences be imprinted on the metabolic network to remain conserved for billions of years? We performed an in vitro screening where we add the simplest components of metabolic enzymes, proteinogenic amino acids, to a nonenzymatic, iron-driven reaction network that resembles glycolysis and the pentose phosphate pathway (PPP). We observe that the presence of the amino acids enhanced several of the nonenzymatic reactions. Particular attention was triggered by a reaction that resembles a rate-limiting step in the oxidative PPP. A prebiotically available, proteinogenic amino acid cysteine accelerated the formation of RNA nucleoside precursor ribose-5-phosphate from 6-phosphogluconate. We report that iron and cysteine interact and have additive effects on the reaction rate so that ribose-5-phosphate forms at high specificity under mild, metabolism typical temperature and environmental conditions. We speculate that accelerating effects of amino acids on rate-limiting nonenzymatic reactions could have facilitated a stepwise enzymatization of nonenzymatic reaction sequences, imprinting their structure on the evolving metabolic network.


Asunto(s)
Cisteína/metabolismo , Hierro/metabolismo , Ribosamonofosfatos/metabolismo , Aminoácidos/metabolismo , Catálisis , Cisteína/química , Evolución Molecular , Glucosa/metabolismo , Glucólisis/fisiología , Hierro/química , Espectroscopía de Resonancia Magnética/métodos , Redes y Vías Metabólicas/fisiología , Origen de la Vida , Vía de Pentosa Fosfato/genética , Vía de Pentosa Fosfato/fisiología
9.
J Neurochem ; 164(1): 57-76, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36326588

RESUMEN

Alzheimer's disease (AD) is a highly prevalent neurodegenerative disorder. Despite increasing evidence of the importance of metabolic dysregulation in AD, the underlying metabolic changes that may impact amyloid plaque formation are not understood, particularly for late-onset AD. This study analyzed genome-wide association studies (GWAS), transcriptomics, and proteomics data obtained from several data repositories to obtain differentially expressed (DE) multi-omics elements in mouse models of AD. We characterized the metabolic modulation in these data sets using gene ontology, transcription factor, pathway, and cell-type enrichment analyses. A predicted lipid signature was extracted from genome-scale metabolic networks (GSMN) and subsequently validated in a lipidomic data set derived from cortical tissue of ABCA-7 null mice, a mouse model of one of the genes associated with late-onset AD. Moreover, a metabolome-wide association study (MWAS) was performed to further characterize the association between dysregulated lipid metabolism in human blood serum and genes associated with AD risk. We found 203 DE transcripts, 164 DE proteins, and 58 DE GWAS-derived mouse orthologs associated with significantly enriched metabolic biological processes. Lipid and bioenergetic metabolic pathways were significantly over-represented across the AD multi-omics data sets. Microglia and astrocytes were significantly enriched in the lipid-predominant AD-metabolic transcriptome. We also extracted a predicted lipid signature that was validated and robustly modeled class separation in the ABCA7 mice cortical lipidome, with 11 of these lipid species exhibiting statistically significant modulations. MWAS revealed 298 AD single nucleotide polymorphisms-metabolite associations, of which 70% corresponded to lipid classes. These results support the importance of lipid metabolism dysregulation in AD and highlight the suitability of mapping AD multi-omics data into GSMNs to identify metabolic alterations.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Ratones , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Lipidómica , Estudio de Asociación del Genoma Completo , Multiómica , Ratones Noqueados , Lípidos , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo
10.
N Engl J Med ; 382(9): 835-844, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32101665

RESUMEN

Mutations in VHL, which encodes von Hippel-Lindau tumor suppressor (VHL), are associated with divergent diseases. We describe a patient with marked erythrocytosis and prominent mitochondrial alterations associated with a severe germline VHL deficiency due to homozygosity for a novel synonymous mutation (c.222C→A, p.V74V). The condition is characterized by early systemic onset and differs from Chuvash polycythemia (c.598C→T) in that it is associated with a strongly reduced growth rate, persistent hypoglycemia, and limited exercise capacity. We report changes in gene expression that reprogram carbohydrate and lipid metabolism, impair muscle mitochondrial respiratory function, and uncouple oxygen consumption from ATP production. Moreover, we identified unusual intermitochondrial connecting ducts. Our findings add unexpected information on the importance of the VHL-hypoxia-inducible factor (HIF) axis to human phenotypes. (Funded by Associazione Italiana Ricerca sul Cancro and others.).


Asunto(s)
Mutación de Línea Germinal , Trastornos del Crecimiento/genética , Hipoglucemia/genética , Factor 1 Inducible por Hipoxia/deficiencia , Mitocondrias/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Expresión Génica , Crecimiento/genética , Humanos , Masculino , Metaboloma/genética , Metaboloma/fisiología , Síndrome , Adulto Joven
11.
Br J Nutr ; 130(6): 921-932, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36539977

RESUMEN

Gestational diabetes mellitus (GDM) is the most common medical complication of pregnancy and a severe threat to pregnant people and offspring health. The molecular origins of GDM, and in particular the placental responses, are not fully known. The present study aimed to perform a comprehensive characterisation of the lipid species in placentas from pregnancies complicated with GDM using high-resolution MS lipidomics, with a particular focus on sphingolipids and acylcarnitines in a semi-targeted approach. The results indicated that despite no major disruption in lipid metabolism, placentas from GDM pregnancies showed significant alterations in sphingolipids, mostly lower abundance of total ceramides. Additionally, very long-chain ceramides and sphingomyelins with twenty-four carbons were lower, and glucosylceramides with sixteen carbons were higher in placentas from GDM pregnancies. Semi-targeted lipidomics revealed the strong impact of GDM on the placental acylcarnitine profile, particularly lower contents of medium and long-chain fatty-acyl carnitine species. The lower contents of sphingolipids may affect the secretory function of the placenta, and lower contents of long-chain fatty acylcarnitines is suggestive of mitochondrial dysfunction. These alterations in placental lipid metabolism may have consequences for fetal growth and development.


Asunto(s)
Diabetes Gestacional , Placenta , Embarazo , Femenino , Humanos , Placenta/metabolismo , Diabetes Gestacional/metabolismo , Esfingolípidos/metabolismo , Carnitina/metabolismo , Ceramidas/metabolismo
12.
BMC Biol ; 20(1): 22, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35057804

RESUMEN

BACKGROUND: Epigenetic regulation relies on the activity of enzymes that use sentinel metabolites as cofactors to modify DNA or histone proteins. Thus, fluctuations in cellular metabolite levels have been reported to affect chromatin modifications. However, whether epigenetic modifiers also affect the levels of these metabolites and thereby impinge on downstream metabolic pathways remains largely unknown. Here, we tested this notion by investigating the function of N-alpha-acetyltransferase 40 (NAA40), the enzyme responsible for N-terminal acetylation of histones H2A and H4, which has been previously implicated with metabolic-associated conditions such as age-dependent hepatic steatosis and calorie-restriction-mediated longevity. RESULTS: Using metabolomic and lipidomic approaches, we found that depletion of NAA40 in murine hepatocytes leads to significant increase in intracellular acetyl-CoA levels, which associates with enhanced lipid synthesis demonstrated by upregulation in de novo lipogenesis genes as well as increased levels of diglycerides and triglycerides. Consistently, the increase in these lipid species coincide with the accumulation of cytoplasmic lipid droplets and impaired insulin signalling indicated by decreased glucose uptake. However, the effect of NAA40 on lipid droplet formation is independent of insulin. In addition, the induction in lipid synthesis is replicated in vivo in the Drosophila melanogaster larval fat body. Finally, supporting our results, we find a strong association of NAA40 expression with insulin sensitivity in obese patients. CONCLUSIONS: Overall, our findings demonstrate that NAA40 affects the levels of cellular acetyl-CoA, thereby impacting lipid synthesis and insulin signalling. This study reveals a novel path through which histone-modifying enzymes influence cellular metabolism with potential implications in metabolic disorders.


Asunto(s)
Histona Acetiltransferasas , Histonas , Acetiltransferasa D N-Terminal/metabolismo , Acetilcoenzima A/metabolismo , Animales , Drosophila melanogaster/metabolismo , Epigénesis Genética , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Humanos , Insulina/metabolismo , Lípidos , Lipogénesis , Ratones
13.
Hepatology ; 73(3): 1028-1044, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32460431

RESUMEN

BACKGROUND AND AIMS: Hepatocytes undergo profound metabolic rewiring when primed to proliferate during compensatory regeneration and in hepatocellular carcinoma (HCC). However, the metabolic control of these processes is not fully understood. In order to capture the metabolic signature of proliferating hepatocytes, we applied state-of-the-art systems biology approaches to models of liver regeneration, pharmacologically and genetically activated cell proliferation, and HCC. APPROACH AND RESULTS: Integrating metabolomics, lipidomics, and transcriptomics, we link changes in the lipidome of proliferating hepatocytes to altered metabolic pathways including lipogenesis, fatty acid desaturation, and generation of phosphatidylcholine (PC). We confirm this altered lipid signature in human HCC and show a positive correlation of monounsaturated PC with hallmarks of cell proliferation and hepatic carcinogenesis. CONCLUSIONS: Overall, we demonstrate that specific lipid metabolic pathways are coherently altered when hepatocytes switch to proliferation. These represent a source of targets for the development of therapeutic strategies and prognostic biomarkers of HCC.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Proliferación Celular , Hepatocitos/metabolismo , Metabolismo de los Lípidos , Neoplasias Hepáticas/metabolismo , Animales , Perfilación de la Expresión Génica , Hepatocitos/fisiología , Humanos , Lipidómica , Lipogénesis , Masculino , Redes y Vías Metabólicas , Metabolómica , Ratones , Ratones Endogámicos C57BL
14.
Hepatology ; 74(3): 1203-1219, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33638902

RESUMEN

BACKGROUND AND AIMS: Human transmembrane 6 superfamily 2 (TM6SF2) variant rs58542926 is associated with NAFLD and HCC. However, conflicting reports in germline Tm6sf2 knockout mice suggest no change or decreased very low density lipoprotein (VLDL) secretion and either unchanged or increased hepatic steatosis, with no increased fibrosis. We generated liver-specific Tm6Sf2 knockout mice (Tm6 LKO) to study VLDL secretion and the impact on development and progression of NAFLD. APPROACH AND RESULTS: Two independent lines of Tm6 LKO mice exhibited spontaneous hepatic steatosis. Targeted lipidomic analyses showed increased triglyceride species whose distribution and abundance phenocopied findings in mice with liver-specific deletion of microsomal triglyceride transfer protein. The VLDL triglyceride secretion was reduced with small, underlipidated particles and unchanged or increased apolipoprotein B. Liver-specific adeno-associated viral, serotype 8 (AAV8) rescue using either wild-type or mutant E167K-Tm6 reduced hepatic steatosis and improved VLDL secretion. The Tm6 LKO mice fed a high milk-fat diet for 3 weeks exhibited increased steatosis and fibrosis, and those phenotypes were further exacerbated when mice were fed fibrogenic, high fat/fructose diets for 20 weeks. In two models of HCC, either neonatal mice injected with streptozotocin (NASH/STAM) and high-fat fed or with diethylnitrosamine injection plus fibrogenic diet feeding, Tm6 LKO mice exhibited increased steatosis, greater tumor burden, and increased tumor area versus Tm6 flox controls. Additionally, diethylnitrosamine-injected and fibrogenic diet-fed Tm6 LKO mice administered wild-type Tm6 or E167K-mutant Tm6 AAV8 revealed significant tumor attenuation, with tumor burden inversely correlated with Tm6 protein levels. CONCLUSIONS: Liver-specific Tm6sf2 deletion impairs VLDL secretion, promoting hepatic steatosis, fibrosis, and accelerated development of HCC, which was mitigated with AAV8- mediated rescue.


Asunto(s)
Carcinoma Hepatocelular/genética , Hígado Graso/genética , Lipoproteínas VLDL/metabolismo , Cirrosis Hepática/genética , Neoplasias Hepáticas/genética , Hígado/metabolismo , Proteínas de la Membrana/genética , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Hígado Graso/metabolismo , Lipidómica , Hígado/patología , Cirrosis Hepática/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/genética , Triglicéridos/metabolismo
15.
PLoS Biol ; 17(6): e3000297, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31199786

RESUMEN

Posttranscriptional modifications in transfer RNA (tRNA) are often critical for normal development because they adapt protein synthesis rates to a dynamically changing microenvironment. However, the precise cellular mechanisms linking the extrinsic stimulus to the intrinsic RNA modification pathways remain largely unclear. Here, we identified the cytosine-5 RNA methyltransferase NSUN2 as a sensor for external stress stimuli. Exposure to oxidative stress efficiently repressed NSUN2, causing a reduction of methylation at specific tRNA sites. Using metabolic profiling, we showed that loss of tRNA methylation captured cells in a distinct catabolic state. Mechanistically, loss of NSUN2 altered the biogenesis of tRNA-derived noncoding fragments (tRFs) in response to stress, leading to impaired regulation of protein synthesis. The intracellular accumulation of a specific subset of tRFs correlated with the dynamic repression of global protein synthesis. Finally, NSUN2-driven RNA methylation was functionally required to adapt cell cycle progression to the early stress response. In summary, we revealed that changes in tRNA methylation profiles were sufficient to specify cellular metabolic states and efficiently adapt protein synthesis rates to cell stress.


Asunto(s)
ADN-Citosina Metilasas/metabolismo , Metiltransferasas/metabolismo , Animales , Línea Celular , Citosina/metabolismo , Metilación de ADN/fisiología , ADN-Citosina Metilasas/fisiología , Humanos , Ratones , Estrés Oxidativo/fisiología , Biosíntesis de Proteínas/fisiología , ARN/metabolismo , ARN de Transferencia/metabolismo
16.
Proc Natl Acad Sci U S A ; 116(50): 25311-25321, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31740610

RESUMEN

The microbiota is now recognized as a key influence on the host immune response in the central nervous system (CNS). As such, there has been some progress toward therapies that modulate the microbiota with the aim of limiting immune-mediated demyelination, as occurs in multiple sclerosis. However, remyelination-the regeneration of myelin sheaths-also depends upon an immune response, and the effects that such interventions might have on remyelination have not yet been explored. Here, we show that the inflammatory response during CNS remyelination in mice is modulated by antibiotic or probiotic treatment, as well as in germ-free mice. We also explore the effect of these changes on oligodendrocyte progenitor cell differentiation, which is inhibited by antibiotics but unaffected by our other interventions. These results reveal that high combined doses of oral antibiotics impair oligodendrocyte progenitor cell responses during remyelination and further our understanding of how mammalian regeneration relates to the microbiota.


Asunto(s)
Sistema Nervioso Central/fisiopatología , Microbioma Gastrointestinal , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/microbiología , Animales , Antibacterianos/administración & dosificación , Antibacterianos/efectos adversos , Diferenciación Celular/efectos de los fármacos , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/inmunología , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/fisiopatología , Oligodendroglía/citología , Oligodendroglía/efectos de los fármacos , Probióticos/administración & dosificación , Remielinización/efectos de los fármacos , Células Madre/citología , Células Madre/efectos de los fármacos
17.
BMC Biol ; 19(1): 265, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911556

RESUMEN

BACKGROUND: Tissue hypoxia is a key feature of several endemic hepatic diseases, including alcoholic and non-alcoholic fatty liver disease, and organ failure. Hypoxia imposes a severe metabolic challenge on the liver, potentially disrupting its capacity to carry out essential functions including fuel storage and the integration of lipid metabolism at the whole-body level. Mitochondrial respiratory function is understood to be critical in mediating the hepatic hypoxic response, yet the time-dependent nature of this response and the role of the respiratory chain in this remain unclear. RESULTS: Here, we report that hepatic respiratory capacity is enhanced following short-term exposure to hypoxia (2 days, 10% O2) and is associated with increased abundance of the respiratory chain supercomplex III2+IV and increased cardiolipin levels. Suppression of this enhanced respiratory capacity, achieved via mild inhibition of mitochondrial complex III, disrupted metabolic homeostasis. Hypoxic exposure for 2 days led to accumulation of plasma and hepatic long chain acyl-carnitines. This was observed alongside depletion of hepatic triacylglycerol species with total chain lengths of 39-53 carbons, containing palmitic, palmitoleic, stearic, and oleic acids, which are associated with de novo lipogenesis. The changes to hepatic respiratory capacity and lipid metabolism following 2 days hypoxic exposure were transient, becoming resolved after 14 days in line with systemic acclimation to hypoxia and elevated circulating haemoglobin concentrations. CONCLUSIONS: The liver maintains metabolic homeostasis in response to shorter term hypoxic exposure through transient enhancement of respiratory chain capacity and alterations to lipid metabolism. These findings may have implications in understanding and treating hepatic pathologies associated with hypoxia.


Asunto(s)
Metabolismo de los Lípidos , Hígado , Homeostasis , Humanos , Hipoxia/metabolismo , Lipogénesis , Hígado/metabolismo
18.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35743227

RESUMEN

The metabolic syndrome (MetS) is a cluster of cardiovascular risk factors characterised by central obesity, atherogenic dyslipidaemia, and changes in the circulating lipidome; the underlying mechanisms that lead to this lipid remodelling have only been partially elucidated. This study used an integrated "omics" approach (untargeted whole serum lipidomics, targeted proteomics, and lipoprotein lipidomics) to study lipoprotein remodelling and HDL composition in subjects with central obesity diagnosed with MetS (vs. controls). Compared with healthy subjects, MetS patients showed higher free fatty acids, diglycerides, phosphatidylcholines, and triglycerides, particularly those enriched in products of de novo lipogenesis. On the other hand, the "lysophosphatidylcholines to phosphatidylcholines" and "cholesteryl ester to free cholesterol" ratios were reduced, pointing to a lower activity of lecithin cholesterol acyltransferase (LCAT) in MetS; LCAT activity (directly measured and predicted by lipidomic ratios) was positively correlated with high-density lipoprotein cholesterol (HDL-C) and negatively correlated with body mass index (BMI) and insulin resistance. Moreover, many phosphatidylcholines and sphingomyelins were significantly lower in the HDL of MetS patients and strongly correlated with BMI and clinical metabolic parameters. These results suggest that MetS is associated with an impairment of phospholipid metabolism in HDL, partially led by LCAT, and associated with obesity and underlying insulin resistance. This study proposes a candidate strategy to use integrated "omics" approaches to gain mechanistic insights into lipoprotein remodelling, thus deepening the knowledge regarding the molecular basis of the association between MetS and atherosclerosis.


Asunto(s)
Resistencia a la Insulina , Síndrome Metabólico , Colesterol/metabolismo , HDL-Colesterol , Humanos , Lipidómica , Lipoproteínas , Síndrome Metabólico/complicaciones , Síndrome Metabólico/diagnóstico , Obesidad/complicaciones , Obesidad Abdominal/complicaciones , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Fosfatidilcolinas
19.
BMC Med ; 19(1): 232, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34503513

RESUMEN

BACKGROUND: Genetic, lifestyle, and environmental factors can lead to perturbations in circulating lipid levels and increase the risk of cardiovascular and metabolic diseases. However, how changes in individual lipid species contribute to disease risk is often unclear. Moreover, little is known about the role of lipids on cardiovascular disease in Pakistan, a population historically underrepresented in cardiovascular studies. METHODS: We characterised the genetic architecture of the human blood lipidome in 5662 hospital controls from the Pakistan Risk of Myocardial Infarction Study (PROMIS) and 13,814 healthy British blood donors from the INTERVAL study. We applied a candidate causal gene prioritisation tool to link the genetic variants associated with each lipid to the most likely causal genes, and Gaussian Graphical Modelling network analysis to identify and illustrate relationships between lipids and genetic loci. RESULTS: We identified 253 genetic associations with 181 lipids measured using direct infusion high-resolution mass spectrometry in PROMIS, and 502 genetic associations with 244 lipids in INTERVAL. Our analyses revealed new biological insights at genetic loci associated with cardiometabolic diseases, including novel lipid associations at the LPL, MBOAT7, LIPC, APOE-C1-C2-C4, SGPP1, and SPTLC3 loci. CONCLUSIONS: Our findings, generated using a distinctive lipidomics platform in an understudied South Asian population, strengthen and expand the knowledge base of the genetic determinants of lipids and their association with cardiometabolic disease-related loci.


Asunto(s)
Estudio de Asociación del Genoma Completo , Infarto del Miocardio , Pueblo Asiatico/genética , Predisposición Genética a la Enfermedad , Humanos , Lípidos , Polimorfismo de Nucleótido Simple , Población Blanca
20.
NMR Biomed ; 34(3): e4456, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33398876

RESUMEN

Apoptosis maintains an equilibrium between cell proliferation and cell death. Many diseases, including cancer, develop because of defects in apoptosis. A known metabolic marker of apoptosis is a notable increase in 1 H NMR-observable resonances associated with lipids stored in lipid droplets. However, standard one-dimensional NMR experiments allow the quantification of lipid concentration only, without providing information about physical characteristics such as the size of lipid droplets, viscosity of the cytosol, or cytoskeletal rigidity. This additional information can improve monitoring of apoptosis-based cancer treatments in intact cells and provide us with mechanistic insight into why these changes occur. In this paper, we use high-resolution magic angle spinning (HRMAS) 1 H NMR spectroscopy to monitor lipid concentrations and apparent diffusion coefficients of mobile lipid in intact cells treated with the apoptotic agents cisplatin or etoposide. We also use solution-state NMR spectroscopy to study changes in lipid profiles of organic solvent cell extracts. Both NMR techniques show an increase in the concentration of lipids but the relative changes are 10 times larger by HRMAS 1 H NMR spectroscopy. Moreover, the apparent diffusion rates of lipids in apoptotic cells measured by HRMAS 1 H NMR spectroscopy decrease significantly as compared with control cells. Slower diffusion rates of mobile lipids in apoptotic cells correlate well with the formation of larger lipid droplets as observed by microscopy. We also compared the mean lipid droplet displacement values calculated from the two methods. Both methods showed shorter displacements of lipid droplets in apoptotic cells. Our results demonstrate that the NMR-based diffusion experiments on intact cells discriminate between control and apoptotic cells. Apparent diffusion measurements in conjunction with 1 H NMR spectroscopy-derived lipid signals provide a novel means of following apoptosis in intact cells. This method could have potential application in enhancing drug discovery by monitoring drug treatments in vitro, particularly for agents that cause portioning of lipids such as apoptosis.


Asunto(s)
Apoptosis , Espectroscopía de Protones por Resonancia Magnética , Animales , Línea Celular , Cisplatino/farmacología , Citoplasma/metabolismo , Difusión , Etopósido/farmacología , Gotas Lipídicas/efectos de los fármacos , Gotas Lipídicas/metabolismo , Metabolómica , Ratones , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA