Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(7): 3607-3622, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38281186

RESUMEN

Biologically precise enhancer licensing by lineage-determining transcription factors enables activation of transcripts appropriate to biological demand and prevents deleterious gene activation. This essential process is challenged by the millions of matches to most transcription factor binding motifs present in many eukaryotic genomes, leading to questions about how transcription factors achieve the exquisite specificity required. The importance of chromatin remodeling factors to enhancer activation is highlighted by their frequent mutation in developmental disorders and in cancer. Here, we determine the roles of CHD4 in enhancer licensing and maintenance in breast cancer cells and during cellular reprogramming. In unchallenged basal breast cancer cells, CHD4 modulates chromatin accessibility. Its depletion leads to redistribution of transcription factors to previously unoccupied sites. During cellular reprogramming induced by the pioneer factor GATA3, CHD4 activity is necessary to prevent inappropriate chromatin opening. Mechanistically, CHD4 promotes nucleosome positioning over GATA3 binding motifs to compete with transcription factor-DNA interaction. We propose that CHD4 acts as a chromatin proof-reading enzyme that prevents unnecessary gene expression by editing chromatin binding activities of transcription factors.


Asunto(s)
Cromatina , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2 , Femenino , Humanos , Sitios de Unión , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Reprogramación Celular/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Elementos de Facilitación Genéticos , Factor de Transcripción GATA3/metabolismo , Factor de Transcripción GATA3/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Nucleosomas/metabolismo , Nucleosomas/genética , Unión Proteica , Factores de Transcripción/metabolismo
2.
Cell Mol Life Sci ; 81(1): 65, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38281222

RESUMEN

Loss of GLI-Similar 3 (GLIS3) function in mice and humans causes congenital hypothyroidism (CH). In this study, we demonstrate that GLIS3 protein is first detectable at E15.5 of murine thyroid development, a time at which GLIS3 target genes, such as Slc5a5 (Nis), become expressed. This, together with observations showing that ubiquitous Glis3KO mice do not display major changes in prenatal thyroid gland morphology, indicated that CH in Glis3KO mice is due to dyshormonogenesis rather than thyroid dysgenesis. Analysis of GLIS3 in postnatal thyroid suggested a link between GLIS3 protein expression and blood TSH levels. This was supported by data showing that treatment with TSH, cAMP, or adenylyl cyclase activators or expression of constitutively active PKA enhanced GLIS3 protein stability and transcriptional activity, indicating that GLIS3 activity is regulated at least in part by TSH/TSHR-mediated activation of PKA. The TSH-dependent increase in GLIS3 transcriptional activity would be critical for the induction of GLIS3 target gene expression, including several thyroid hormone (TH) biosynthetic genes, in thyroid follicular cells of mice fed a low iodine diet (LID) when blood TSH levels are highly elevated. Like TH biosynthetic genes, the expression of cell cycle genes is suppressed in ubiquitous Glis3KO mice fed a LID; however, in thyroid-specific Glis3 knockout mice, the expression of cell cycle genes was not repressed, in contrast to TH biosynthetic genes. This indicated that the inhibition of cell cycle genes in ubiquitous Glis3KO mice is dependent on changes in gene expression in GLIS3 target tissues other than the thyroid.


Asunto(s)
Glándula Tiroides , Factores de Transcripción , Animales , Ratones , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Proteínas Represoras/genética , Glándula Tiroides/metabolismo , Hormonas Tiroideas/metabolismo , Tirotropina/genética , Tirotropina/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
3.
J Allergy Clin Immunol ; 153(2): 487-502.e9, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37956733

RESUMEN

BACKGROUND: Allergic asthma is driven largely by allergen-specific TH2 cells, which develop in regional lymph nodes on the interaction of naive CD4+ T cells with allergen-bearing dendritic cells that migrate from the lung. This migration event is dependent on CCR7 and its chemokine ligand, CCL21. However, is has been unclear whether the other CCR7 ligand, CCL19, has a role in allergic airway disease. OBJECTIVE: This study sought to define the role of CCL19 in TH2 differentiation and allergic airway disease. METHODS: Ccl19-deficient mice were studied in an animal model of allergic asthma. Dendritic cells or fibroblastic reticular cells from wild-type and Ccl19-deficient mice were cultured with naive CD4+ T cells, and cytokine production was measured by ELISA. Recombinant CCL19 was added to CD4+ T-cell cultures, and gene expression was assessed by RNA-sequencing and quantitative PCR. Transcription factor activation was assessed by flow cytometry. RESULTS: Lungs of Ccl19-deficient mice had less allergic airway inflammation, reduced airway hyperresponsiveness, and less IL-4 and IL-13 production compared with lungs of Ccl19-sufficient animals. Naive CD4+ T cells cocultured with Ccl19-deficient dendritic cells or fibroblastic reticular cells produced lower amounts of type 2 cytokines than did T cells cocultured with their wild-type counterparts. Recombinant CCL19 increased phosphorylation of STAT5 and induced expression of genes associated with TH2 cell and IL-2 signaling pathways. CONCLUSIONS: These results reveal a novel, TH2 cell-inducing function of CCL19 in allergic airway disease and suggest that strategies to block this pathway might help to reduce the incidence or severity of allergic asthma.


Asunto(s)
Asma , Hipersensibilidad , Animales , Ratones , Quimiocina CCL19/genética , Receptores CCR7 , Ligandos , Asma/genética , Inflamación/patología , Pulmón , Hipersensibilidad/metabolismo , Alérgenos/metabolismo , Diferenciación Celular , Células Th2 , Células Dendríticas
4.
Proc Natl Acad Sci U S A ; 117(31): 18439-18447, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32675241

RESUMEN

In mammals, repressive histone modifications such as trimethylation of histone H3 Lys9 (H3K9me3), frequently coexist with DNA methylation, producing a more stable and silenced chromatin state. However, it remains elusive how these epigenetic modifications crosstalk. Here, through structural and biochemical characterizations, we identified the replication foci targeting sequence (RFTS) domain of maintenance DNA methyltransferase DNMT1, a module known to bind the ubiquitylated H3 (H3Ub), as a specific reader for H3K9me3/H3Ub, with the recognition mode distinct from the typical trimethyl-lysine reader. Disruption of the interaction between RFTS and the H3K9me3Ub affects the localization of DNMT1 in stem cells and profoundly impairs the global DNA methylation and genomic stability. Together, this study reveals a previously unappreciated pathway through which H3K9me3 directly reinforces DNMT1-mediated maintenance DNA methylation.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Metilación de ADN , Heterocromatina/metabolismo , Histonas/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , Heterocromatina/genética , Histonas/química , Histonas/genética , Humanos , Lisina/genética , Lisina/metabolismo , Metilación , Procesamiento Proteico-Postraduccional
5.
Nucleic Acids Res ; 48(9): 4756-4768, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32232341

RESUMEN

Estrogen receptors (ER) are activated by the steroid hormone 17ß-estradiol. Estrogen receptor alpha (ER-α) forms a regulatory network in mammary epithelial cells and in breast cancer with the transcription factors FOXA1 and GATA3. GATA3 is one of the most frequently mutated genes in breast cancer and is capable of specifying chromatin localization of FOXA1 and ER-α. How GATA3 mutations found in breast cancer impact genomic localization of ER-α and the transcriptional network downstream of ER-α and FOXA1 remains unclear. Here, we investigate the function of a recurrent patient-derived GATA3 mutation (R330fs) on this regulatory network. Genomic analysis indicates that the R330fs mutant can disrupt localization of ER-α and FOXA1. Loci co-bound by all three factors are enriched for genes integral to mammary gland development as well as epithelial cell biology. This gene set is differentially regulated in GATA3 mutant cells in culture and in tumors bearing similar mutations in vivo. The altered distribution of ER-α and FOXA1 in GATA3-mutant cells is associated with altered chromatin architecture, which leads to differential gene expression. These results suggest an active role for GATA3 zinc finger 2 mutants in ER-α positive breast tumors.


Asunto(s)
Neoplasias de la Mama/genética , Receptor alfa de Estrógeno/metabolismo , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , Femenino , Humanos , Mutación , Transcripción Genética
6.
J Biol Chem ; 295(25): 8387-8400, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32354741

RESUMEN

Estrogen receptor α (ERα) modulates gene expression by interacting with chromatin regions that are frequently distal from the promoters of estrogen-regulated genes. Active chromatin-enriched "super-enhancer" (SE) regions, mainly observed in in vitro culture systems, often control production of key cell type-determining transcription factors. Here, we defined super-enhancers that bind to ERα in vivo within hormone-responsive uterine tissue in mice. We found that SEs are already formed prior to estrogen exposure at the onset of puberty. The genes at SEs encoded critical developmental factors, including retinoic acid receptor α (RARA) and homeobox D (HOXD). Using high-throughput chromosome conformation capture (Hi-C) along with DNA sequence analysis, we demonstrate that most SEs are located at a chromatin loop end and that most uterine genes in loop ends associated with these SEs are regulated by estrogen. Although the SEs were formed before puberty, SE-associated genes acquired optimal ERα-dependent expression after reproductive maturity, indicating that pubertal processes that occur after SE assembly and ERα binding are needed for gene responses. Genes associated with these SEs affected key estrogen-mediated uterine functions, including transforming growth factor ß (TGFß) and LIF interleukin-6 family cytokine (LIF) signaling pathways. To the best of our knowledge, this is the first identification of SE interactions that underlie hormonal regulation of genes in uterine tissue and optimal development of estrogen responses in this tissue.


Asunto(s)
Cromatina/metabolismo , Receptor alfa de Estrógeno/metabolismo , Útero/metabolismo , Animales , Sitios de Unión , Cromatina/química , Estradiol/farmacología , Receptor alfa de Estrógeno/deficiencia , Receptor alfa de Estrógeno/genética , Femenino , Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Factor Inhibidor de Leucemia/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Unión Proteica , Receptor alfa de Ácido Retinoico/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Útero/efectos de los fármacos
7.
FASEB J ; 34(12): 16003-16021, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33064339

RESUMEN

Estrogen receptor alpha (ERα) is a ligand-dependent transcription regulator, containing two transactivation functional domains, AF-1 and AF-2. The selective estrogen receptor modulators (SERMs), including 4-hydroxytamoxifen (4OHT), activate AF-1 preferentially rather than AF-2. However, it is unclear whether this specific function is related to the tissue-selective functionality of SERMs. Moreover, there is no information determining AF-1-dependent estrogenic-genes existing in tissues. We sought to identify AF-1-dependent estrogenic-genes using the AF-2 mutated knock-in (KI) mouse model, AF2ERKI. AF2ER is an AF-2 disrupted estradiol (E2)-insensitive mutant ERα, but AF-1-dependent transcription can be activated by the estrogen-antagonists, fulvestrant (ICI) and 4OHT. Gene profiling and ChIP-Seq analysis identified Klk1b21 as an ICI-inducible gene in AF2ERKI uterus. The regulatory activity was analyzed further using a cell-based reporter assay. The 5'-flanking 0.4k bp region of Klk1b21 gene responded as an ERα AF-1-dependent estrogen-responsive promoter. The 150 bp minimum ERα binding element (EBE) consists of three direct repeats. These three half-site sequences were essential for the ERα-dependent transactivation and were differentially recognized by E2 and 4OHT for the gene activation. This response was impaired when the minimum EBE was fused with a thymidine-kinase promoter but could be restored by fusion with the 100 bp minimum transcription initiation element (TIE) of Klk1b21, suggesting that the cooperative function of EBE and TIE is essential for mediating AF-1-dependent transactivation. These findings provide the first in vivo evidence that endogenous ERα AF-1 dominant estrogenic-genes exist in estrogen-responsive organs. Such findings will aid in understanding the mechanism of ERα-dependent tissue-selective activity of SERMs.


Asunto(s)
Receptor alfa de Estrógeno/genética , Activación Transcripcional/genética , Animales , Línea Celular Tumoral , Estradiol/genética , Antagonistas de Estrógenos/farmacología , Estrógenos/genética , Femenino , Fulvestrant/farmacología , Células Hep G2 , Humanos , Ligandos , Ratones , Modelos Animales , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Unión Proteica/genética , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Sitio de Iniciación de la Transcripción/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos
8.
Proc Natl Acad Sci U S A ; 115(18): E4189-E4198, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29666266

RESUMEN

Early transient developmental exposure to an endocrine active compound, diethylstilbestrol (DES), a synthetic estrogen, causes late-stage effects in the reproductive tract of adult mice. Estrogen receptor alpha (ERα) plays a role in mediating these developmental effects. However, the developmental mechanism is not well known in male tissues. Here, we present genome-wide transcriptome and DNA methylation profiling of the seminal vesicles (SVs) during normal development and after DES exposure. ERα mediates aberrations of the mRNA transcriptome in SVs of adult mice following neonatal DES exposure. This developmental exposure impacts differential diseases between male (SVs) and female (uterus) tissues when mice reach adulthood due to most DES-altered genes that appear to be tissue specific during mouse development. Certain estrogen-responsive gene changes in SVs are cell-type specific. DNA methylation dynamically changes during development in the SVs of wild-type (WT) and ERα-knockout (αERKO) mice, which increases both the loss and gain of differentially methylated regions (DMRs). There are more gains of DMRs in αERKO compared with WT. Interestingly, the methylation changes between the two genotypes are in different genomic loci. Additionally, the expression levels of a subset of DES-altered genes are associated with their DNA methylation status following developmental DES exposure. Taken together, these findings provide an important basis for understanding the molecular and cellular mechanism of endocrine-disrupting chemicals (EDCs), such as DES, during development in the male mouse tissues. This unique evidence contributes to our understanding of developmental actions of EDCs in human health.


Asunto(s)
Metilación de ADN/efectos de los fármacos , Dietilestilbestrol/efectos adversos , Receptor alfa de Estrógeno/metabolismo , Estrógenos no Esteroides/efectos adversos , Regulación de la Expresión Génica/efectos de los fármacos , Vesículas Seminales/metabolismo , Transcriptoma/efectos de los fármacos , Animales , Metilación de ADN/genética , Dietilestilbestrol/farmacología , Receptor alfa de Estrógeno/agonistas , Receptor alfa de Estrógeno/genética , Estrógenos no Esteroides/farmacología , Sitios Genéticos , Masculino , Ratones , Ratones Noqueados
9.
J Allergy Clin Immunol ; 145(5): 1389-1405, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31837371

RESUMEN

BACKGROUND: Control of the inflammatory response is critical to maintaining homeostasis, and failure to do so contributes to the burden of chronic inflammation associated with several disease states. The mechanisms that underlie immunosuppression, however, remain largely unknown. Although defects in autophagy machinery have been associated with inflammatory pathologic conditions, we now appreciate that autophagic components participate in noncanonical pathways distinct from classical autophagy. We have previously demonstrated that LC3-associated phagocytosis (LAP), a noncanonical autophagic process dependent on Rubicon (rubicon autophagy regulator [RUBCN]), contributes to immunosuppression. OBJECTIVE: We used Rubcn-/- mice to examine the role of the LAP pathway in mediating the UV-induced immunotolerant program in a model of contact hypersensitivity (CHS). METHODS: Flow cytometry and transcriptional analysis were used to measure immune cell infiltration and activation in the skin of Rubcn+/+ and Rubcn-/- mice during the CHS response. RESULTS: Here, we demonstrate that LAP is required for UV-induced immunosuppression and that UV exposure induces a broadly anti-inflammatory transcriptional program dependent on Rubicon. Rubcn-/- mice are resistant to UV-induced immunosuppression and instead display exaggerated inflammation in a model of CHS. Specifically, RUBCN deficiency in CD301b+ dermal dendritic cells results in their increased antigen presentation capacity and subsequent hyperactivation of the CD8+ T-cell response. CONCLUSIONS: LAP functions to limit the immune response and is critical in maintaining the balance between homeostasis and inflammation.


Asunto(s)
Proteínas Relacionadas con la Autofagia/inmunología , Autofagia , Células Dendríticas/inmunología , Dermatitis por Contacto/inmunología , Tolerancia Inmunológica , Piel/citología , Rayos Ultravioleta , Animales , Proteínas Relacionadas con la Autofagia/genética , Femenino , Ratones Transgénicos , Fagocitosis , Exposición a la Radiación , Piel/inmunología
10.
J Biol Chem ; 294(25): 9746-9759, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31073032

RESUMEN

Insulin-like growth factor 1 (IGF1) is primarily synthesized in and secreted from the liver; however, estrogen (E2), through E2 receptor α (ERα), increases uterine Igf1 mRNA levels. Previous ChIP-seq analyses of the murine uterus have revealed a potential enhancer region distal from the Igf1 transcription start site (TSS) with multiple E2-dependent ERα-binding regions. Here, we show E2-dependent super enhancer-associated characteristics and suggest contact between the distal enhancer and the Igf1 TSS. We hypothesized that this distal super-enhancer region controls E2-responsive induction of uterine Igf1 transcripts. We deleted 430 bp, encompassing one of the ERα-binding sites, thereby disrupting interactions of the enhancer with gene-regulatory factors. As a result, E2-mediated induction of mouse uterine Igf1 mRNA is completely eliminated, whereas hepatic Igf1 expression remains unaffected. This highlights the central role of a distal enhancer in the assembly of the factors necessary for E2-dependent interaction with the Igf1 TSS and induction of uterus-specific Igf1 transcription. Of note, loss of the enhancer did not affect fertility or uterine growth responses. Deletion of uterine Igf1 in a PgrCre;Igf1f/f model decreased female fertility but did not impact the E2-induced uterine growth response. Moreover, E2-dependent activation of uterine IGF1 signaling was not impaired by disrupting the distal enhancer or by deleting the coding transcript. This indicated a role for systemic IGF1, suggested that other growth mediators drive uterine response to E2, and suggested that uterine-derived IGF1 is essential for reproductive success. Our findings elucidate the role of a super enhancer in Igf1 regulation and uterine growth.


Asunto(s)
Elementos de Facilitación Genéticos , Receptor alfa de Estrógeno/metabolismo , Estrógenos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/fisiología , Transcripción Genética/efectos de los fármacos , Útero/metabolismo , Animales , Femenino , Ratones , Ratones Noqueados , Útero/efectos de los fármacos
11.
Hum Mol Genet ; 27(24): 4273-4287, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30212841

RESUMEN

The identity of the gonads is determined by which fate, ovarian granulosa cell or testicular Sertoli cell, the bipotential somatic cell precursors choose to follow. In most vertebrates, the conserved transcription factor FOXL2 contributes to the fate of granulosa cells. To understand FOXL2 functions during gonad differentiation, we performed genome-wide analysis of FOXL2 chromatin occupancy in fetal ovaries and established a genetic mouse model that forces Foxl2 expression in the fetal testis. When FOXL2 was ectopically expressed in the somatic cell precursors in the fetal testis, FOXL2 was sufficient to repress Sertoli cell differentiation, ultimately resulting in partial testis-to-ovary sex-reversal. Combining genome-wide analysis of FOXL2 binding in the fetal ovary with transcriptomic analyses of our Foxl2 gain-of-function and previously published Foxl2 loss-of-function models, we identified potential pathways responsible for the feminizing action of FOXL2. Finally, comparison of FOXL2 genome-wide occupancy in the fetal ovary with testis-determining factor SOX9 genome-wide occupancy in the fetal testis revealed extensive overlaps, implying that antagonistic signals between FOXL2 and SOX9 occur at the chromatin level.


Asunto(s)
Proteína Forkhead Box L2/genética , Factor de Transcripción SOX9/genética , Procesos de Determinación del Sexo/genética , Diferenciación Sexual/genética , Animales , Cromatina/genética , Femenino , Desarrollo Fetal/genética , Feto/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Genoma/genética , Gónadas/crecimiento & desarrollo , Masculino , Ratones , Ovario/crecimiento & desarrollo , Unión Proteica , Testículo/crecimiento & desarrollo , Transcriptoma/genética
12.
Nucleic Acids Res ; 46(16): 8153-8167, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30107566

RESUMEN

p53 transcriptional networks are well-characterized in many organisms. However, a global understanding of requirements for in vivo p53 interactions with DNA and relationships with transcription across human biological systems in response to various p53 activating situations remains limited. Using a common analysis pipeline, we analyzed 41 data sets from genome-wide ChIP-seq studies of which 16 have associated gene expression data, including our recent primary data with normal human lymphocytes. The resulting extensive analysis, accessible at p53 BAER hub via the UCSC browser, provides a robust platform to characterize p53 binding throughout the human genome including direct influence on gene expression and underlying mechanisms. We establish the impact of spacers and mismatches from consensus on p53 binding in vivo and propose that once bound, neither significantly influences the likelihood of expression. Our rigorous approach revealed a large p53 genome-wide cistrome composed of >900 genes directly targeted by p53. Importantly, we identify a core cistrome signature composed of genes appearing in over half the data sets, and we identify signatures that are treatment- or cell-specific, demonstrating new functions for p53 in cell biology. Our analysis reveals a broad homeostatic role for human p53 that is relevant to both basic and translational studies.


Asunto(s)
Proteínas de Unión al ADN/genética , Genoma Humano/genética , Transcripción Genética , Proteína p53 Supresora de Tumor/genética , ADN Intergénico/genética , Bases de Datos Genéticas , Regulación de la Expresión Génica/genética , Genes/genética , Humanos , Linfocitos , Biosíntesis de Proteínas
13.
Am J Physiol Gastrointest Liver Physiol ; 316(1): G95-G105, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30335469

RESUMEN

Crohn's disease (CD) is a chronic inflammatory gastrointestinal disorder. Genetic association studies have implicated dysregulated autophagy in CD. Among risk loci identified are a promoter single nucleotide polymorphism (SNP)( rs13361189 ) and two intragenic SNPs ( rs9637876 , rs10065172 ) in immunity-related GTPase family M ( IRGM) a gene that encodes a protein of the autophagy initiation complex. All three SNPs have been proposed to modify IRGM expression, but reports have been divergent and largely derived from cell lines. Here, analyzing RNA-Sequencing data of human tissues from the Genotype-Tissue Expression Project, we found that rs13361189 minor allele carriers had reduced IRGM expression in whole blood and terminal ileum, and upregulation in ileum of ZNF300P1, a locus adjacent to IRGM on chromosome 5q33.1 that encodes a long noncoding RNA. Whole blood and ileum from minor allele carriers had altered expression of multiple additional genes that have previously been linked to colitis and/or autophagy. Notable among these was an increase in ileum of LTF (lactoferrin), an established fecal inflammatory biomarker of CD, and in whole blood of TNF, a key cytokine in CD pathogenesis. Last, we confirmed that risk alleles at all three loci associated with increased risk for CD but not ulcerative colitis in a case-control study. Taken together, our findings suggest that genetically encoded IRGM deficiency may predispose to CD through dysregulation of inflammatory gene networks. Gene expression profiling of disease target tissues in genetically susceptible populations is a promising strategy for revealing new leads for the study of molecular pathogenesis and, potentially, for precision medicine. NEW & NOTEWORTHY Single nucleotide polymorphisms in immunity-related GTPase family M ( IRGM), a gene that encodes an autophagy initiation protein, have been linked epidemiologically to increased risk for Crohn's disease (CD). Here, we show for the first time that subjects with risk alleles at two such loci, rs13361189 and rs10065172 , have reduced IRGM expression in whole blood and terminal ileum, as well as dysregulated expression of a wide array of additional genes that regulate inflammation and autophagy.


Asunto(s)
Autofagia/genética , Colitis Ulcerosa/genética , Enfermedad de Crohn/genética , Proteínas de Unión al GTP/genética , Predisposición Genética a la Enfermedad , Estudios de Casos y Controles , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Estudios de Asociación Genética , Humanos , Riesgo
14.
PLoS Genet ; 12(10): e1006385, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27788131

RESUMEN

Accumulation of somatic changes, due to environmental and endogenous lesions, in the human genome is associated with aging and cancer. Understanding the impacts of these processes on mutagenesis is fundamental to understanding the etiology, and improving the prognosis and prevention of cancers and other genetic diseases. Previous methods relying on either the generation of induced pluripotent stem cells, or sequencing of single-cell genomes were inherently error-prone and did not allow independent validation of the mutations. In the current study we eliminated these potential sources of error by high coverage genome sequencing of single-cell derived clonal fibroblast lineages, obtained after minimal propagation in culture, prepared from skin biopsies of two healthy adult humans. We report here accurate measurement of genome-wide magnitude and spectra of mutations accrued in skin fibroblasts of healthy adult humans. We found that every cell contains at least one chromosomal rearrangement and 600­13,000 base substitutions. The spectra and correlation of base substitutions with epigenomic features resemble many cancers. Moreover, because biopsies were taken from body parts differing by sun exposure, we can delineate the precise contributions of environmental and endogenous factors to the accrual of genetic changes within the same individual. We show here that UV-induced and endogenous DNA damage can have a comparable impact on the somatic mutation loads in skin fibroblasts. Trial Registration: ClinicalTrials.gov NCT01087307.


Asunto(s)
Daño del ADN/genética , Genoma Humano/genética , Mutación/efectos de la radiación , Neoplasias/genética , Piel/efectos de la radiación , Biopsia , Células Clonales/efectos de la radiación , Daño del ADN/efectos de la radiación , Fibroblastos/patología , Fibroblastos/efectos de la radiación , Genoma Humano/efectos de la radiación , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Mutagénesis/genética , Mutación/genética , Tasa de Mutación , Neoplasias/etiología , Neoplasias/patología , Análisis de la Célula Individual , Piel/patología , Luz Solar/efectos adversos
15.
BMC Genomics ; 19(1): 345, 2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-29743009

RESUMEN

BACKGROUND: Identification of mutations from next-generation sequencing data typically requires a balance between sensitivity and accuracy. This is particularly true of DNA insertions and deletions (indels), that can impart significant phenotypic consequences on cells but are harder to call than substitution mutations from whole genome mutation accumulation experiments. To overcome these difficulties, we present muver, a computational framework that integrates established bioinformatics tools with novel analytical methods to generate mutation calls with the extremely low false positive rates and high sensitivity required for accurate mutation rate determination and comparison. RESULTS: Muver uses statistical comparison of ancestral and descendant allelic frequencies to identify variant loci and assigns genotypes with models that include per-sample assessments of sequencing errors by mutation type and repeat context. Muver identifies maximally parsimonious mutation pathways that connect these genotypes, differentiating potential allelic conversion events and delineating ambiguities in mutation location, type, and size. Benchmarking with a human gold standard father-son pair demonstrates muver's sensitivity and low false positive rates. In DNA mismatch repair (MMR) deficient Saccharomyces cerevisiae, muver detects multi-base deletions in homopolymers longer than the replicative polymerase footprint at rates greater than predicted for sequential single-base deletions, implying a novel multi-repeat-unit slippage mechanism. CONCLUSIONS: Benchmarking results demonstrate the high accuracy and sensitivity achieved with muver, particularly for indels, relative to available tools. Applied to an MMR-deficient Saccharomyces cerevisiae system, muver mutation calls facilitate mechanistic insights into DNA replication fidelity.


Asunto(s)
Genoma Fúngico , Acumulación de Mutaciones , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Biología Computacional , Padre , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Tasa de Mutación , Estándares de Referencia
17.
Genome Res ; 23(12): 2030-41, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24013550

RESUMEN

Memory is a hallmark of adaptive immunity, wherein lymphocytes mount a superior response to a previously encountered antigen. It has been speculated that epigenetic alterations in memory lymphocytes contribute to their functional distinction from their naive counterparts. However, the nature and extent of epigenetic alterations in memory compartments remain poorly characterized. Here we profile the DNA methylome and the transcriptome of B-lymphocyte subsets representing stages of the humoral immune response before and after antigen exposure in vivo from multiple humans. A significant percentage of activation-induced losses of DNA methylation mapped to transcription factor binding sites. An additional class of demethylated loci mapped to Alu elements across the genome and accompanied repression of DNA methyltransferase 3A. The activation-dependent DNA methylation changes were largely retained in the progeny of activated B cells, generating a similar epigenetic signature in downstream memory B cells and plasma cells with distinct transcriptional programs. These findings provide insights into the methylation dynamics of the genome during cellular differentiation in an immune response.


Asunto(s)
Elementos Alu , Linfocitos B/inmunología , Metilación de ADN , Activación de Linfocitos/genética , Elementos Reguladores de la Transcripción/genética , Inmunidad Adaptativa/genética , Inmunidad Adaptativa/inmunología , Linfocitos B/metabolismo , Sitios de Unión/genética , Diferenciación Celular/genética , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Epigénesis Genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genoma Humano , Humanos , Memoria Inmunológica/genética , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
PLoS Genet ; 9(12): e1004028, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24385926

RESUMEN

The Mi-2/nucleosome remodeling and histone deacetylase (NuRD) complex is a multiprotein machine proposed to regulate chromatin structure by nucleosome remodeling and histone deacetylation activities. Recent reports describing localization of NuRD provide new insights that question previous models on NuRD action, but are not in complete agreement. Here, we provide location analysis of endogenous MBD3, a component of NuRD complex, in two human breast cancer cell lines (MCF-7 and MDA-MB-231) using two independent genomic techniques: DNA adenine methyltransferase identification (DamID) and ChIP-seq. We observed concordance of the resulting genomic localization, suggesting that these studies are converging on a robust map for NuRD in the cancer cell genome. MBD3 preferentially associated with CpG rich promoters marked by H3K4me3 and showed cell-type specific localization across gene bodies, peaking around the transcription start site. A subset of sites bound by MBD3 was enriched in H3K27ac and was in physical proximity to promoters in three-dimensional space, suggesting function as enhancers. MBD3 enrichment was also noted at promoters modified by H3K27me3. Functional analysis of chromatin indicated that MBD3 regulates nucleosome occupancy near promoters and in gene bodies. These data suggest that MBD3, and by extension the NuRD complex, may have multiple roles in fine tuning expression for both active and silent genes, representing an important step in defining regulatory mechanisms by which NuRD complex controls chromatin structure and modification status.


Asunto(s)
Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos/genética , Regiones Promotoras Genéticas/genética , Secuencia de Bases , Cromatina/genética , Proteínas de Unión al ADN/biosíntesis , Regulación Neoplásica de la Expresión Génica , Genómica/métodos , Histona Desacetilasas , Histonas/genética , Humanos , Células MCF-7 , Nucleosomas , Sitio de Iniciación de la Transcripción
19.
Gene Expr ; 16(4): 163-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26637396

RESUMEN

GATA3 is a highly conserved, essential transcription factor expressed in a number of tissues, including the mammary gland. GATA3 expression is required for normal development of the mammary gland where it is estimated to be the most abundant transcription factor in luminal epithelial cells. In breast cancer, GATA3 expression is highly correlated with the luminal transcriptional program. Recent genomic analysis of human breast cancers has revealed high-frequency mutation in GATA3 in luminal tumors, suggesting "driver" function(s). Here we discuss mutation of GATA3 in breast cancer and the potential mechanism(s) by which mutation may lead to a growth advantage in cancer.


Asunto(s)
Neoplasias de la Mama/genética , Factor de Transcripción GATA3/fisiología , Genes Supresores de Tumor , Oncogenes , Femenino , Factor de Transcripción GATA3/genética , Humanos
20.
BMC Cancer ; 14: 278, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24758297

RESUMEN

BACKGROUND: The transcription factor GATA3 is a favorable prognostic indicator in estrogen receptor-α (ERα)-positive breast tumors in which it participates with ERα and FOXA1 in a complex transcriptional regulatory program driving tumor growth. GATA3 mutations are frequent in breast cancer and have been classified as driver mutations. To elucidate the contribution(s) of GATA3 alterations to cancer, we studied two breast cancer cell lines, MCF7, which carries a heterozygous frameshift mutation in the second zinc finger of GATA3, and T47D, wild-type at this locus. METHODS: Immunofluorescence staining and subcellular fractionation were employed to verify cellular localization of GATA3 in T47D and MCF7 cells. To test protein stability, cells were treated with translation inhibitor, cycloheximide or proteasome inhibitor, MG132, and GATA3 abundance was measured over time using immunoblot. GATA3 turn-over in response to hormone was determined by treating the cells with estradiol or ERα agonist, ICI 182,780. DNA binding ability of recombinant GATA3 was evaluated using electrophoretic mobility shift assay and heparin chromatography. Genomic location of GATA3 in MCF7 and T47D cells was assessed by chromatin immunoprecipitation coupled with next-generation sequencing (ChIP-seq). RESULTS: GATA3 localized in the nucleus in T47D and MCF7 cells, regardless of the mutation status. The truncated protein in MCF7 had impaired interaction with chromatin and was easily released from the nucleus. Recombinant mutant GATA3 was able to bind DNA to a lesser degree than the wild-type protein. Heterozygosity for the truncating mutation conferred protection from regulated turnover of GATA3, ERα and FOXA1 following estrogen stimulation in MCF7 cells. Thus, mutant GATA3 uncoupled protein-level regulation of master regulatory transcription factors from hormone action. Consistent with increased protein stability, ChIP-seq profiling identified greater genome-wide accumulation of GATA3 in MCF7 cells bearing the mutation, albeit with a similar distribution across the genome, comparing to T47D cells. CONCLUSIONS: We propose that this specific, cancer-derived mutation in GATA3 deregulates physiologic protein turnover, stabilizes GATA3 binding across the genome and modulates the response of breast cancer cells to estrogen signaling.


Asunto(s)
Neoplasias de la Mama/genética , Estrógenos/farmacología , Factor de Transcripción GATA3/genética , Transcripción Genética/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Receptor alfa de Estrógeno/metabolismo , Estrógenos/metabolismo , Femenino , Factor de Transcripción GATA3/metabolismo , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Humanos , Células MCF-7 , Mutación , Estabilidad Proteica/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA