Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609585

RESUMEN

The hippocampus is crucial for acquiring and retrieving episodic and contextual memories. In previous studies, the inactivation of dentate gyrus (DG) neurons by chemogenetic- and optogenetic-mediated hyperpolarization led to opposing conclusions about DG's role in memory retrieval. One study used Designer Receptors Exclusively Activated by Designer Drugs (DREADD)-mediated clozapine N-oxide (CNO)-induced hyperpolarization and reported that the previously formed memory was erased, thus concluding that denate gyrus is needed for memory maintenance. The other study used optogenetic with halorhodopsin induced hyperpolarization and reported and dentate gyrus is needed for memory retrieval. We hypothesized that this apparent discrepancy could be due to the length of hyperpolarization in previous studies; minutes by optogenetics and several hours by DREADD/CNO. Since hyperpolarization interferes with anterograde and retrograde neuronal signaling, it is possible that the memory engram in the dentate gyrus and the entorhinal to hippocampus trisynaptic circuit was erased by long-term, but not with short-term hyperpolarization. We developed and applied an advanced chemogenetic technology to selectively silence synaptic output by blocking neurotransmitter release without hyperpolarizing DG neurons to explore this apparent discrepancy. We performed in vivo electrophysiology during trace eyeblink in a rabbit model of associative learning. Our work shows that the DG output is required for memory retrieval. Based on previous and recent findings, we propose that the actively functional anterograde and retrograde neuronal signaling is necessary to preserve synaptic memory engrams along the entorhinal cortex to the hippocampal trisynaptic circuit.

2.
J Neuroinflammation ; 21(1): 34, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38279130

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is a neuroinflammatory demyelinating disease characterized by motor deficits and cognitive decline. Many immune aspects of the disease are understood through studies in the experimental autoimmune encephalomyelitis (EAE) model, including the contribution of the NF-κB transcription factor to neuroinflammation. However, the cell-specific roles of NF-κB to EAE and its cognitive comorbidities still needs further investigation. We have previously shown that the myeloid cell NF-κB plays a role in the healthy brain by exerting homeostatic regulation of neuronal excitability and synaptic plasticity and here we investigated its role in EAE. METHODS: We used constitutive MφIKKßΚΟ mice, in which depletion of IKKß, the main activating kinase of NF-κB, was global to CNS and peripheral macrophages, and ΜgΙΚΚßKO mice, in which depletion was inducible and specific to CNS macrophages by 28 days after tamoxifen administration. We subjected these mice to MOG35-55 induced EAE and cuprizone-induced demyelination. We measured pathology by immunohistochemistry, investigated molecular mechanisms by RNA sequencing analysis and studied neuronal functions by in vivo electrophysiology in awake animals. RESULTS: Global depletion of IKKß from myeloid cells in MφIKKßΚΟ mice accelerated the onset and significantly supressed chronic EAE. Knocking out IKKß only from CNS resident macrophages accelerated the onset and exacerbated chronic EAE, accompanied by earlier demyelination and immune cell infiltration but had no effect in cuprizone-induced demyelination. Peripheral T cell effector functions were not affected by myeloid cell deletion of IKKß, but CNS resident mechanisms, such as microglial activation and neuronal hyperexcitability were altered from early in EAE. Lastly, depletion of myeloid cell IKKß resulted in enhanced late long-term potentiation in EAE. CONCLUSIONS: IKKß-mediated activation of NF-κΒ in myeloid cells has opposing roles in EAE depending on the cell type and the disease stage. In CNS macrophages it is protective while in peripheral macrophages it is disease-promoting and acts mainly during chronic disease. Although clinically protective, CNS myeloid cell IKKß deletion dysregulates neuronal excitability and synaptic plasticity in EAE. These effects of IKKß on brain cognitive abilities deserve special consideration when therapeutic interventions that inhibit NF-κB are used in MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Ratones , Animales , Encefalomielitis Autoinmune Experimental/metabolismo , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , FN-kappa B/metabolismo , Cuprizona , Macrófagos/metabolismo , Gravedad del Paciente , Ratones Endogámicos C57BL , Microglía/metabolismo
3.
Brain ; 145(2): 729-743, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-34424282

RESUMEN

Alzheimer's disease comprises amyloid-ß and hyperphosphorylated Tau accumulation, imbalanced neuronal activity, aberrant oscillatory rhythms and cognitive deficits. Non-demented with Alzheimer's disease neuropathology defines a novel clinical entity with amyloid-ß and Tau pathologies but preserved cognition. The mechanisms underlying such neuroprotection remain undetermined and animal models of non-demented with Alzheimer's disease neuropathology are currently unavailable. We demonstrate that J20/VLW mice (accumulating amyloid-ß and hyperphosphorylated Tau) exhibit preserved hippocampal rhythmic activity and cognition, as opposed to J20 and VLW animals, which show significant alterations. Furthermore, we show that the overexpression of mutant human Tau in coexistence with amyloid-ß accumulation renders a particular hyperphosphorylated Tau signature in hippocampal interneurons. The GABAergic septohippocampal pathway, responsible for hippocampal rhythmic activity, is preserved in J20/VLW mice, in contrast to single mutants. Our data highlight J20/VLW mice as a suitable animal model in which to explore the mechanisms driving cognitive preservation in non-demented with Alzheimer's disease neuropathology. Moreover, they suggest that a differential Tau phosphorylation pattern in hippocampal interneurons prevents the loss of GABAergic septohippocampal innervation and alterations in local field potentials, thereby avoiding cognitive deficits.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Humanos , Ratones , Ratones Transgénicos , Neuropatología , Proteínas tau/genética , Proteínas tau/metabolismo
4.
J Neurosci ; 41(33): 7086-7102, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34261700

RESUMEN

The G-protein-gated inwardly rectifying potassium (Kir3/GIRK) channel is the effector of many G-protein-coupled receptors (GPCRs). Its dysfunction has been linked to the pathophysiology of Down syndrome, Alzheimer's and Parkinson's diseases, psychiatric disorders, epilepsy, drug addiction, or alcoholism. In the hippocampus, GIRK channels decrease excitability of the cells and contribute to resting membrane potential and inhibitory neurotransmission. Here, to elucidate the role of GIRK channels activity in the maintenance of hippocampal-dependent cognitive functions, their involvement in controlling neuronal excitability at different levels of complexity was examined in C57BL/6 male mice. For that purpose, GIRK activity in the dorsal hippocampus CA3-CA1 synapse was pharmacologically modulated by two drugs: ML297, a GIRK channel opener, and Tertiapin-Q (TQ), a GIRK channel blocker. Ex vivo, using dorsal hippocampal slices, we studied the effect of pharmacological GIRK modulation on synaptic plasticity processes induced in CA1 by Schaffer collateral stimulation. In vivo, we performed acute intracerebroventricular (i.c.v.) injections of the two GIRK modulators to study their contribution to electrophysiological properties and synaptic plasticity of dorsal hippocampal CA3-CA1 synapse, and to learning and memory capabilities during hippocampal-dependent tasks. We found that pharmacological disruption of GIRK channel activity by i.c.v. injections, causing either function gain or function loss, induced learning and memory deficits by a mechanism involving neural excitability impairments and alterations in the induction and maintenance of long-term synaptic plasticity processes. These results support the contention that an accurate control of GIRK activity must take place in the hippocampus to sustain cognitive functions.SIGNIFICANCE STATEMENT Cognitive processes of learning and memory that rely on hippocampal synaptic plasticity processes are critically ruled by a finely tuned neural excitability. G-protein-gated inwardly rectifying K+ (GIRK) channels play a key role in maintaining resting membrane potential, cell excitability and inhibitory neurotransmission. Here, we demonstrate that modulation of GIRK channels activity, causing either function gain or function loss, transforms high-frequency stimulation (HFS)-induced long-term potentiation (LTP) into long-term depression (LTD), inducing deficits in hippocampal-dependent learning and memory. Together, our data show a crucial GIRK-activity-mediated mechanism that governs synaptic plasticity direction and modulates subsequent hippocampal-dependent cognitive functions.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G/fisiología , Hipocampo/fisiología , Proteínas del Tejido Nervioso/fisiología , Plasticidad Neuronal/fisiología , Animales , Condicionamiento Operante/fisiología , Emociones/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Aprendizaje/fisiología , Potenciación a Largo Plazo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/fisiología , Desempeño Psicomotor/fisiología
5.
Cereb Cortex ; 31(1): 281-300, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32885230

RESUMEN

It is assumed that the claustrum (CL) is involved in sensorimotor integration and cognitive processes. We recorded the firing activity of identified CL neurons during classical eyeblink conditioning in rabbits, using a delay paradigm in which a tone was presented as conditioned stimulus (CS), followed by a corneal air puff as unconditioned stimulus (US). Neurons were identified by their activation from motor (MC), cingulate (CC), and medial prefrontal (mPFC) cortices. CL neurons were rarely activated by single stimuli of any modality. In contrast, their firing was significantly modulated during the first sessions of paired CS/US presentations, but not in well-trained animals. Neuron firing rates did not correlate with the kinematics of conditioned responses (CRs). CL local field potentials (LFPs) changed their spectral power across learning and presented well-differentiated CL-mPFC/CL-MC network dynamics, as shown by crossfrequency spectral measurements. CL electrical stimulation did not evoke eyelid responses, even in trained animals. Silencing of synaptic transmission of CL neurons by the vINSIST method delayed the acquisition of CRs but did not affect their presentation rate. The CL plays an important role in the acquisition of associative learning, mostly in relation to the novelty of CS/US association, but not in the expression of CRs.


Asunto(s)
Potenciales de Acción/fisiología , Cognición/fisiología , Condicionamiento Clásico/fisiología , Párpados/fisiología , Animales , Parpadeo/fisiología , Condicionamiento Palpebral/fisiología , Estimulación Eléctrica/métodos , Neuronas/fisiología , Corteza Prefrontal/fisiología , Conejos
6.
Cereb Cortex ; 31(4): 2187-2204, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33264389

RESUMEN

Dopamine receptors play an important role in motivational, emotional, and motor responses. In addition, growing evidence suggests a key role of hippocampal dopamine receptors in learning and memory. It is well known that associative learning and synaptic plasticity of CA3-CA1 requires the dopamine D1 receptor (D1R). However, the specific role of the dopamine D2 receptor (D2R) on memory-related neuroplasticity processes is still undefined. Here, by using two models of D2R loss, D2R knockout mice (Drd2-/-) and mice with intrahippocampal injections of Drd2-small interfering RNA (Drd2-siRNA), we aimed to investigate how D2R is involved in learning and memory as well as in long-term potentiation of the hippocampus. Our studies revealed that the genetic inactivation of D2R impaired the spatial memory, associative learning, and the classical conditioning of eyelid responses. Similarly, deletion of D2R reduced the activity-dependent synaptic plasticity in the hippocampal CA1-CA3 synapse. Our results demonstrate the first direct evidence that D2R is essential in behaving mice for trace eye blink conditioning and associated changes in hippocampal synaptic strength. Taken together, these results indicate a key role of D2R in regulating hippocampal plasticity changes and, in consequence, acquisition and consolidation of spatial and associative forms of memory.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Región CA3 Hipocampal/metabolismo , Plasticidad Neuronal/fisiología , Receptores de Dopamina D2/deficiencia , Memoria Espacial/fisiología , Sinapsis/metabolismo , Animales , Reacción de Prevención/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Interferente Pequeño/administración & dosificación , Receptores de Dopamina D2/genética , Sinapsis/genética
7.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36142727

RESUMEN

Synaptic plasticity is a cellular process involved in learning and memory by which specific patterns of neural activity adapt the synaptic strength and efficacy of the synaptic transmission. Its induction is governed by fine tuning between excitatory/inhibitory synaptic transmission. In experimental conditions, synaptic plasticity can be artificially evoked at hippocampal CA1 pyramidal neurons by repeated stimulation of Schaffer collaterals. However, long-lasting synaptic modifications studies during memory formation in physiological conditions in freely moving animals are very scarce. Here, to study synaptic plasticity phenomena during recognition memory in the dorsal hippocampus, field postsynaptic potentials (fPSPs) evoked at the CA3-CA1 synapse were recorded in freely moving mice during object-recognition task performance. Paired pulse stimuli were applied to Schaffer collaterals at the moment that the animal explored a new or a familiar object along different phases of the test. Stimulation evoked a complex synaptic response composed of an ionotropic excitatory glutamatergic fEPSP, followed by two inhibitory responses, an ionotropic, GABAA-mediated fIPSP and a metabotropic, G-protein-gated inwardly rectifying potassium (GirK) channel-mediated fIPSP. Our data showed the induction of LTP-like enhancements for both the glutamatergic and GirK-dependent components of the dorsal hippocampal CA3-CA1 synapse during the exploration of novel but not familiar objects. These results support the contention that synaptic plasticity processes that underlie hippocampal-dependent memory are sustained by fine tuning mechanisms that control excitatory and inhibitory neurotransmission balance.


Asunto(s)
Hipocampo , Plasticidad Neuronal , Animales , Región CA1 Hipocampal/fisiología , Hipocampo/fisiología , Ratones , Plasticidad Neuronal/fisiología , Potasio , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico
8.
J Neurosci ; 39(13): 2441-2458, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30700530

RESUMEN

It has been well documented that neurotrophins, including brain-derived neurotrophic factor (BDNF), are severely affected in Alzheimer's disease (AD), but their administration faces a myriad of technical challenges. Here we took advantage of the early astrogliosis observed in an amyloid mouse model of AD (5xFAD) and used it as an internal sensor to administer BDNF conditionally and locally. We first demonstrate the relevance of BDNF release from astrocytes by evaluating the effects of coculturing WT neurons and BDNF-deficient astrocytes. Next, we crossed 5xFAD mice with pGFAP:BDNF mice (only males were used) to create 5xFAD mice that overexpress BDNF when and where astrogliosis is initiated (5xF:pGB mice). We evaluated the behavioral phenotype of these mice. We first found that BDNF from astrocytes is crucial for dendrite outgrowth and spine number in cultured WT neurons. Double-mutant 5xF:pGB mice displayed improvements in cognitive tasks compared with 5xFAD littermates. In these mice, there was a rescue of BDNF/TrkB downstream signaling activity associated with an improvement of dendritic spine density and morphology. Clusters of synaptic markers, PSD-95 and synaptophysin, were also recovered in 5xF:pGB compared with 5xFAD mice as well as the number of presynaptic vesicles at excitatory synapses. Additionally, experimentally evoked LTP in vivo was increased in 5xF:pGB mice. The beneficial effects of conditional BDNF production and local delivery at the location of active neuropathology highlight the potential to use endogenous biomarkers with early onset, such as astrogliosis, as regulators of neurotrophic therapy in AD.SIGNIFICANCE STATEMENT Recent evidence places astrocytes as pivotal players during synaptic plasticity and memory processes. In the present work, we first provide evidence that astrocytes are essential for neuronal morphology via BDNF release. We then crossed transgenic mice (5xFAD mice) with the transgenic pGFAP-BDNF mice, which express BDNF under the GFAP promoter. The resultant double-mutant mice 5xF:pGB mice displayed a full rescue of hippocampal BDNF loss and related signaling compared with 5xFAD mice and a significant and specific improvement in all the evaluated cognitive tasks. These improvements did not correlate with amelioration of ß amyloid load or hippocampal adult neurogenesis rate but were accompanied by a dramatic recovery of structural and functional synaptic plasticity.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Astrocitos/metabolismo , Factor Neurotrófico Derivado del Encéfalo/administración & dosificación , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Espinas Dendríticas/metabolismo , Hipocampo/metabolismo , Trastornos de la Memoria/metabolismo , Plasticidad Neuronal , Enfermedad de Alzheimer/complicaciones , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Masculino , Trastornos de la Memoria/etiología , Trastornos de la Memoria/prevención & control , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos
9.
Brain ; 142(10): 3158-3175, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31365052

RESUMEN

Huntington's disease is a neurodegenerative disorder caused by a CAG repeat expansion in exon 1 of the huntingtin gene. Striatal projection neurons are mainly affected, leading to motor symptoms, but molecular mechanisms involved in their vulnerability are not fully characterized. Here, we show that eIF4E binding protein (4E-BP), a protein that inhibits translation, is inactivated in Huntington's disease striatum by increased phosphorylation. Accordingly, we detected aberrant de novo protein synthesis. Proteomic characterization indicates that translation specifically affects sets of proteins as we observed upregulation of ribosomal and oxidative phosphorylation proteins and downregulation of proteins related to neuronal structure and function. Interestingly, treatment with the translation inhibitor 4EGI-1 prevented R6/1 mice motor deficits, although corticostriatal long-term depression was not markedly changed in behaving animals. At the molecular level, injection of 4EGI-1 normalized protein synthesis and ribosomal content in R6/1 mouse striatum. In conclusion, our results indicate that dysregulation of protein synthesis is involved in mutant huntingtin-induced striatal neuron dysfunction.


Asunto(s)
Factor 4E Eucariótico de Iniciación/fisiología , Enfermedad de Huntington/genética , Biosíntesis de Proteínas/fisiología , Animales , Conducta Animal , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Factor 4E Eucariótico de Iniciación/genética , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Interneuronas/metabolismo , Masculino , Ratones , Ratones Transgénicos , Neostriado/patología , Degeneración Nerviosa/patología , Neuronas/metabolismo , Proteínas Nucleares/genética , Fosforilación , Proteómica
10.
J Neurosci ; 38(22): 5096-5110, 2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29720552

RESUMEN

Rapid and effective neural transmission of information requires correct axonal myelination. Modifications in myelination alter axonal capacity to transmit electric impulses and enable pathological conditions. In the CNS, oligodendrocytes (OLs) myelinate axons, a complex process involving various cellular interactions. However, we know little about the mechanisms that orchestrate correct myelination. Here, we demonstrate that OLs express R-Ras1 and R-Ras2. Using female and male mutant mice to delete these proteins, we found that activation of the PI3K/Akt and Erk1/2-MAPK pathways was weaker in mice lacking one or both of these GTPases, suggesting that both proteins coordinate the activity of these two pathways. Loss of R-Ras1 and/or R-Ras2 diminishes the number of OLs in major myelinated CNS tracts and increases the proportion of immature OLs. In R-Ras1-/- and R-Ras2-/--null mice, OLs show aberrant morphologies and fail to differentiate correctly into myelin-forming phenotypes. The smaller OL population and abnormal OL maturation induce severe hypomyelination, with shorter nodes of Ranvier in R-Ras1-/- and/or R-Ras2-/- mice. These defects explain the slower conduction velocity of myelinated axons that we observed in the absence of R-Ras1 and R-Ras2. Together, these results suggest that R-Ras1 and R-Ras2 are upstream elements that regulate the survival and differentiation of progenitors into OLs through the PI3K/Akt and Erk1/2-MAPK pathways for proper myelination.SIGNIFICANCE STATEMENT In this study, we show that R-Ras1 and R-Ras2 play essential roles in regulating myelination in vivo and control fundamental aspects of oligodendrocyte (OL) survival and differentiation through synergistic activation of PI3K/Akt and Erk1/2-MAPK signaling. Mice lacking R-Ras1 and/or R-Ras2 show a diminished OL population with a higher proportion of immature OLs, explaining the observed hypomyelination in main CNS tracts. In vivo electrophysiology recordings demonstrate a slower conduction velocity of nerve impulses in the absence of R-Ras1 and R-Ras2. Therefore, R-Ras1 and R-Ras2 are essential for proper axonal myelination and accurate neural transmission.


Asunto(s)
Diferenciación Celular/fisiología , Supervivencia Celular/fisiología , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/fisiología , Proteínas de la Membrana/fisiología , Proteínas de Unión al GTP Monoméricas/fisiología , Vaina de Mielina/fisiología , Oligodendroglía/fisiología , Proteínas ras/genética , Proteínas ras/fisiología , Animales , Axones/fisiología , Diferenciación Celular/genética , Supervivencia Celular/genética , Femenino , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteínas de Unión al GTP Monoméricas/genética , Neurogénesis , Nervio Óptico/crecimiento & desarrollo , Nervio Óptico/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Nódulos de Ranvier/fisiología , Células Madre/fisiología
11.
Pharmacol Res ; 142: 223-236, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30818044

RESUMEN

Stroke is one of the main causes of death, neurological dysfunctions or disability in elderly. Neuroprotective drugs have been proposed to improve long-term recovery after stroke, but failed to reach clinical effectiveness. Hence, recent studies suggested that restorative therapies should combine neuroprotection and remyelination. Montelukast, an anti-asthmatic drug, was shown to exert neuroprotection in animal models of CNS injuries, but its ability to affect oligodendrocytes, restoring fiber connectivity, remains to be determined. In this study, we evaluated whether montelukast induces long-term repair by promoting fiber connectivity up to 8 weeks after middle cerebral artery occlusion (MCAo), using different experimental approaches such as in vivo diffusion magnetic resonance imaging (MRI), electrophysiological techniques, ex vivo diffusion tensor imaging (DTI)-based fiber tracking and immunohistochemistry. We found that, in parallel with a reduced evolution of ischemic lesion and atrophy, montelukast increased the DTI-derived axial diffusivity and number of myelin fibers, the density of myelin binding protein (MBP) and the number of GSTpi+ mature oligodendrocytes. Together with the rescue of MCAo-induced impairments of local field potentials in ischemic cortex, the data suggest that montelukast may improve fibers reorganization. Thus, to ascertain whether this effect involved changes of oligodendrocyte precursor cells (OPCs) activation and maturation, we used the reporter GPR17iCreERT2:CAG-eGreen florescent protein (GFP) mice that allowed us to trace the fate of OPCs throughout animal's life. Our results showed that montelukast enhanced the OPC recruitment and proliferation at acute phase, and increased their differentiation to mature oligodendrocytes at chronic phase after MCAo. Considering the crosstalk between OPCs and microglia has been widely reported in the context of demyelinating insults, we also assessed microglia activation. We observed that montelukast influenced the phenotype of microglial cells, increasing the number of M2 polarized microglia/macrophages, over the M1 phenotype, at acute phase after MCAo. In conclusion, we demonstrated that montelukast improves fiber re-organization and long-term functional recovery after brain ischemia, enhancing recruitment and maturation of OPCs. The present data suggest that montelukast, an already approved drug, could be "repositioned "as a protective drug in stroke acting also on fiber re-organization.


Asunto(s)
Acetatos/uso terapéutico , Antiasmáticos/uso terapéutico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Quinolinas/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Encéfalo/patología , Ciclopropanos , Infarto de la Arteria Cerebral Media/fisiopatología , Macrófagos/efectos de los fármacos , Masculino , Ratones , Microglía/efectos de los fármacos , Accidente Cerebrovascular/fisiopatología , Sulfuros
12.
Cereb Cortex ; 28(3): 1011-1023, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28199479

RESUMEN

Although it is generally assumed that brain circuits are modified by new experiences, the question of which changes in synaptic efficacy take place in cortical and subcortical circuits across the learning process remains unanswered. Rats were trained in the acquisition of an operant conditioning in a Skinner box provided with light beams to detect animals' approaches to lever and feeder. Behaviors such as pressing the lever, eating, exploring, and grooming were also recorded. Animals were chronically implanted with stimulating and recording electrodes in hippocampal, prefrontal, and subcortical sites relevant to the task. Field synaptic potentials were evoked during the performance of the above-mentioned behaviors and before, during, and after the acquisition process. Afferent pathways to the hippocampus and the intrinsic hippocampal circuit were slightly modified in synaptic strength during the performance of those behaviors. In contrast, afferent and efferent circuits of the medial prefrontal cortex were significantly modified in synaptic strength across training sessions, mostly at the moment of the largest change in the learning curve. Performance of behaviors nondirectly related to the acquisition process (exploring, grooming) also evoked changes in synaptic strength across training. This study helps to understand when and where learning is being engraved in the brain.


Asunto(s)
Conducta Animal/fisiología , Condicionamiento Operante/fisiología , Hipocampo/fisiología , Potenciales de la Membrana/fisiología , Red Nerviosa/fisiología , Sinapsis/patología , Animales , Aprendizaje por Asociación , Conducta Animal/clasificación , Estimulación Eléctrica , Electrodos Implantados , Conducta Exploratoria/fisiología , Conducta Alimentaria , Aseo Animal/fisiología , Hipocampo/anatomía & histología , Masculino , Ratas , Ratas Wistar
13.
Int J Mol Sci ; 20(5)2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30866445

RESUMEN

Imbalances of excitatory/inhibitory synaptic transmission occur early in the pathogenesis of Alzheimer's disease (AD), leading to hippocampal hyperexcitability and causing synaptic, network, and cognitive dysfunctions. G-protein-gated potassium (GirK) channels play a key role in the control of neuronal excitability, contributing to inhibitory signaling. Here, we evaluate the relationship between GirK channel activity and inhibitory hippocampal functionality in vivo. In a non-transgenic mouse model of AD, field postsynaptic potentials (fPSPs) from the CA3⁻CA1 synapse in the dorsal hippocampus were recorded in freely moving mice. Intracerebroventricular (ICV) injections of amyloid-ß (Aß) or GirK channel modulators impaired ionotropic (GABAA-mediated fPSPs) and metabotropic (GirK-mediated fPSPs) inhibitory signaling and disrupted the potentiation of synaptic inhibition. However, the activation of GirK channels prevented Aß-induced changes in GABAA components. Our data shows, for the first time, the presence of long-term potentiation (LTP) for both the GABAA and GirK-mediated inhibitory postsynaptic responses in vivo. In addition, our results support the importance of an accurate level of GirK-dependent signaling for dorsal hippocampal performance in early amyloid pathology models by controlling the excess of excitation that disrupts synaptic plasticity processes.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/administración & dosificación , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Sinapsis/fisiología , Enfermedad de Alzheimer/metabolismo , Animales , Modelos Animales de Enfermedad , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/agonistas , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Inyecciones , Potenciación a Largo Plazo , Masculino , Ratones , Transducción de Señal/efectos de los fármacos , Sinapsis/metabolismo
14.
J Neurosci ; 37(24): 5923-5935, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28536269

RESUMEN

The prelimbic (PrL) cortex constitutes one of the highest levels of cortical hierarchy dedicated to the execution of adaptive behaviors. We have identified a specific local field potential (LFP) pattern generated in the PrL cortex and associated with cognition-related behaviors. We used this pattern to trigger the activation of a visual display on a touch screen as part of an operant conditioning task. Rats learned to increase the presentation rate of the selected θ to ß-γ (θ/ß-γ) transition pattern across training sessions. The selected LFP pattern appeared to coincide with a significant decrease in the firing of PrL pyramidal neurons and did not seem to propagate to other cortical or subcortical areas. An indication of the PrL cortex's cognitive nature is that the experimental disruption of this θ/ß-γ transition pattern prevented the proper performance of the acquired task without affecting the generation of other motor responses. The use of this LFP pattern to trigger an operant task evoked only minor changes in its electrophysiological properties. Thus, the PrL cortex has the capability of generating an oscillatory pattern for dealing with environmental constraints. In addition, the selected θ/ß-γ transition pattern could be a useful tool to activate the presentation of external cues or to modify the current circumstances.SIGNIFICANCE STATEMENT Brain-machine interfaces represent a solution for physically impaired people to communicate with external devices. We have identified a specific local field potential pattern generated in the prelimbic cortex and associated with goal-directed behaviors. We used the pattern to trigger the activation of a visual display on a touch screen as part of an operant conditioning task. Rats learned to increase the presentation rate of the selected field potential pattern across training. The selected pattern was not modified when used to activate the touch screen. Electrical stimulation of the recording site prevented the proper performance of the task. Our findings show that the prelimbic cortex can generate oscillatory patterns that rats can use to control their environment for achieving specific goals.


Asunto(s)
Relojes Biológicos/fisiología , Interfaces Cerebro-Computador , Cognición/fisiología , Condicionamiento Operante/fisiología , Lóbulo Límbico/fisiología , Red Nerviosa/fisiología , Animales , Ondas Encefálicas/fisiología , Potenciales Evocados/fisiología , Retroalimentación Fisiológica/fisiología , Masculino , Ratas
15.
J Neurosci ; 36(26): 6988-7001, 2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27358456

RESUMEN

UNLABELLED: Classical blink conditioning is a well known model for studying neural generation of acquired motor responses. The acquisition of this type of associative learning has been related to many cortical, subcortical, and cerebellar structures. However, until now, no one has studied the motor cortex (MC) and its possible role in classical eyeblink conditioning. We recorded in rabbits the activity of MC neurons during blink conditioning using a delay paradigm. Neurons were identified by their antidromic activation from facial nucleus (FN) or red nucleus (RN). For conditioning, we used a tone as a conditioned stimulus (CS) followed by an air puff as an unconditioned stimulus (US) that coterminated with it. Conditioned responses (CRs) were determined from the electromyographic activity of the orbicularis oculi muscle and/or from eyelid position recorded with the search coil technique. Type A neurons increased their discharge rates across conditioning sessions and reached peak firing during the CS-US interval, while type B cells presented a second peak during US presentation. Both of them project to the FN. Type C cells increased their firing across the CS-US interval, reaching peak values at the time of US presentation, and were activated from the RN. These three types of neurons fired well in advance of the beginning of CRs and changed with them. Reversible inactivation of the MC during conditioning evoked a decrease in learning curves and in the amplitude of CRs, while train stimulation of the MC simulated the profile and kinematics of conditioned blinks. In conclusion, MC neurons are involved in the acquisition and expression of CRs. SIGNIFICANCE STATEMENT: Classical blink conditioning is a popular experimental model for studying neural mechanisms underlying the acquisition of motor skills. The acquisition of this type of associative learning has been related to many cortical, subcortical, and cerebellar structures. However, until now, no one has studied the motor cortex (MC) and its possible role in classical eyeblink conditioning. Here, we report that the firing activities of MC neurons, recorded in behaving rabbits, are related to and preceded the initiation of conditioned blinks. MC neurons were identified as projecting to the red or facial nuclei and encoded the kinematics of conditioned eyelid responses. The timed stimulation of recording sites simulated the profile of conditioned blinks. MC neurons play a role in the acquisition and expression of these acquired motor responses.


Asunto(s)
Potenciales de Acción/fisiología , Condicionamiento Palpebral/fisiología , Corteza Motora/fisiología , Neuronas Motoras/fisiología , Vigilia/fisiología , Animales , Fenómenos Biomecánicos , Biotina/análogos & derivados , Biotina/metabolismo , Mapeo Encefálico , Colina O-Acetiltransferasa/metabolismo , Dextranos/metabolismo , Electromiografía , Masculino , Corteza Motora/citología , Vías Nerviosas/fisiología , Estimulación Luminosa , Conejos , Estadísticas no Paramétricas
16.
J Neurosci ; 36(13): 3648-59, 2016 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-27030752

RESUMEN

The dual-specificity tyrosine phosphorylation-regulated kinase DYRK1A is a serine/threonine kinase involved in neuronal differentiation and synaptic plasticity and a major candidate of Down syndrome brain alterations and cognitive deficits. DYRK1A is strongly expressed in the cerebral cortex, and its overexpression leads to defective cortical pyramidal cell morphology, synaptic plasticity deficits, and altered excitation/inhibition balance. These previous observations, however, do not allow predicting how the behavior of the prefrontal cortex (PFC) network and the resulting properties of its emergent activity are affected. Here, we integrate functional, anatomical, and computational data describing the prefrontal network alterations in transgenic mice overexpressingDyrk1A(TgDyrk1A). Usingin vivoextracellular recordings, we show decreased firing rate and gamma frequency power in the prefrontal network of anesthetized and awakeTgDyrk1Amice. Immunohistochemical analysis identified a selective reduction of vesicular GABA transporter punctae on parvalbumin positive neurons, without changes in the number of cortical GABAergic neurons in the PFC ofTgDyrk1Amice, which suggests that selective disinhibition of parvalbumin interneurons would result in an overinhibited functional network. Using a conductance-based computational model, we quantitatively demonstrate that this alteration could explain the observed functional deficits including decreased gamma power and firing rate. Our results suggest that dysfunction of cortical fast-spiking interneurons might be central to the pathophysiology of Down syndrome. SIGNIFICANCE STATEMENT: DYRK1Ais a major candidate gene in Down syndrome. Its overexpression results into altered cognitive abilities, explained by defective cortical microarchitecture and excitation/inhibition imbalance. An open question is how these deficits impact the functionality of the prefrontal cortex network. Combining functional, anatomical, and computational approaches, we identified decreased neuronal firing rate and deficits in gamma frequency in the prefrontal cortices of transgenic mice overexpressingDyrk1A We also identified a reduction of vesicular GABA transporter punctae specifically on parvalbumin positive interneurons. Using a conductance-based computational model, we demonstrate that this decreased inhibition on interneurons recapitulates the observed functional deficits, including decreased gamma power and firing rate. Our results suggest that dysfunction of cortical fast-spiking interneurons might be central to the pathophysiology of Down syndrome.


Asunto(s)
Potenciales de Acción/fisiología , Ritmo Gamma/genética , Regulación de la Expresión Génica/genética , Neuronas/fisiología , Corteza Prefrontal/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Potenciales de Acción/genética , Animales , Simulación por Computador , Proteínas Transportadoras de GABA en la Membrana Plasmática/genética , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Neurológicos , Parvalbúminas/metabolismo , Corteza Prefrontal/citología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Somatostatina/metabolismo , Análisis Espectral , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Vigilia , Quinasas DyrK
17.
Adv Exp Med Biol ; 1015: 75-93, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29080022

RESUMEN

Contemporary neuroscientists are paying increasing attention to subcellular, molecular, and electrophysiological mechanisms underlying learning and memory processes. Recent studies have examined the development of transgenic mice affected at different stages of the learning process, or have emulated in animals various human pathological conditions involving cognition and motor learning. However, a parallel effort is needed to develop stimulating and recording techniques suitable for use in behaving mice in order to understand activity-dependent synaptic changes taking place during the very moment of the learning process. The in vivo models should incorporate information collected from different molecular and in vitro approaches. Long-term potentiation (LTP) has been proposed as the neural mechanism underlying synaptic plasticity, and NMDA receptors have been proposed as the molecular substrate of LTP. It now seems necessary to study the relationship of both LTP and NMDA receptors to functional changes in synaptic efficiency taking place during actual learning in selected cerebral cortical structures. Here, we review data collected in our laboratory during the past 10 years on the involvement of different hippocampal synapses in the acquisition of the classically conditioned eyelid responses in behaving mice. Overall the results indicate a specific contribution of each cortical synapse to the acquisition and storage of new motor and cognitive abilities. Available data show that LTP, evoked by high-frequency stimulation of Schaffer collaterals, disturbs both the acquisition of conditioned eyelid responses and the physiological changes that occur at hippocampal synapses during learning. Moreover, the administration of NMDA-receptor antagonists is able not only to prevent LTP induction in vivo, but also to hinder both the formation of conditioned eyelid responses and functional changes in the strength of the CA3-CA1 synapse. Nevertheless, many other neurotransmitter receptors, intracellular mediators, and transcription factors are also involved in learning and memory processes. In summary, it can be proposed that learning and memory in behaving mammals are the result of the activation of complex and distributed functional states involving many different cerebral cortical synapses, with the participation also of various neurotransmitter systems.


Asunto(s)
Aprendizaje por Asociación/fisiología , Encéfalo/fisiología , Memoria/fisiología , Plasticidad Neuronal/fisiología , Animales , Animales Modificados Genéticamente , Condicionamiento Clásico/fisiología
18.
Fetal Diagn Ther ; 42(3): 189-197, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28052270

RESUMEN

INTRODUCTION: Chronic reduction of oxygen and nutrient delivery to the fetus has been related to neurodevelopmental problems. Placental underperfusion induces a significant reduction in oxygen and nutrient delivery, whereas maternal undernutrition causes mainly nutrient deficiency. A comparison of the neurodevelopmental effects of both situations in pregnant rabbits was performed. MATERIALS AND METHODS: The placental underperfusion model was induced after uteroplacental vessel ligation at 25 days of pregnancy. The undernutrition model was induced after a reduction of 70% of the basal maternal intake at 22 days of pregnancy. Neurobehavioral tests were applied in the derived offspring at the neonatal period and over the long term. Structural brain differences were evaluated by brain networks obtained from diffusion magnetic resonance imaging. RESULTS: Birth weight was significantly lower in both cases. However, stillbirth was only increased in the placental underperfusion model. Cases from both models presented poorer neurobehavioral performance and network infrastructure, being more pronounced in the placental underperfusion model. DISCUSSION: Prenatal insults during the last third of gestation resulted in functional and structural disturbances. The degree of neurodevelopmental impairment and its association with structural brain reorganization seemed to be related to the type of the prenatal insult, showing stronger effects in the placental underperfusion model.


Asunto(s)
Desarrollo Fetal , Retardo del Crecimiento Fetal/fisiopatología , Desnutrición , Insuficiencia Placentaria , Animales , Peso al Nacer , Femenino , Retardo del Crecimiento Fetal/etiología , Fenómenos Fisiologicos Nutricionales Maternos , Trastornos del Neurodesarrollo/etiología , Embarazo , Conejos
19.
J Neurosci ; 35(44): 14809-21, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26538651

RESUMEN

We were interested in determining whether rostral medial prefrontal cortex (rmPFC) neurons participate in the measurement of conditioned stimulus-unconditioned stimulus (CS-US) time intervals during classical eyeblink conditioning. Rabbits were conditioned with a delay paradigm consisting of a tone as CS. The CS started 50, 250, 500, 1000, or 2000 ms before and coterminated with an air puff (100 ms) directed at the cornea as the US. Eyelid movements were recorded with the magnetic search coil technique and the EMG activity of the orbicularis oculi muscle. Firing activities of rmPFC neurons were recorded across conditioning sessions. Reflex and conditioned eyelid responses presented a dominant oscillatory frequency of ≈12 Hz. The firing rate of each recorded neuron presented a single peak of activity with a frequency dependent on the CS-US interval (i.e., ≈12 Hz for 250 ms, ≈6 Hz for 500 ms, and≈3 Hz for 1000 ms). Interestingly, rmPFC neurons presented their dominant firing peaks at three precise times evenly distributed with respect to CS start and also depending on the duration of the CS-US interval (only for intervals of 250, 500, and 1000 ms). No significant neural responses were recorded at very short (50 ms) or long (2000 ms) CS-US intervals. rmPFC neurons seem not to encode the oscillatory properties characterizing conditioned eyelid responses in rabbits, but are probably involved in the determination of CS-US intervals of an intermediate range (250-1000 ms). We propose that a variable oscillator underlies the generation of working memories in rabbits. SIGNIFICANCE STATEMENT: The way in which brains generate working memories (those used for the transient processing and storage of newly acquired information) is still an intriguing question. Here, we report that the firing activities of neurons located in the rostromedial prefrontal cortex recorded in alert behaving rabbits are controlled by a dynamic oscillator. This oscillator generated firing frequencies in a variable band of 3-12 Hz depending on the conditioned stimulus-unconditioned stimulus intervals (1 s, 500 ms, 250 ms) selected for classical eyeblink conditioning of behaving rabbits. Shorter (50 ms) and longer (2 s) intervals failed to activate the oscillator and prevented the acquisition of conditioned eyelid responses. This is an unexpected mechanism to generate sustained firing activities in neural circuits generating working memories.


Asunto(s)
Relojes Biológicos/fisiología , Parpadeo/fisiología , Condicionamiento Clásico/fisiología , Condicionamiento Palpebral/fisiología , Corteza Prefrontal/fisiología , Animales , Masculino , Conejos , Factores de Tiempo
20.
J Neurosci ; 35(14): 5504-21, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25855168

RESUMEN

In mature neurons, the number of synapses is determined by a neuronal activity-dependent dynamic equilibrium between positive and negative regulatory factors. We hypothesized that neuronal pentraxin (NP1), a proapoptotic protein induced by low neuronal activity, could be a negative regulator of synapse density because it is found in dystrophic neurites in Alzheimer's disease-affected brains. Here, we report that knockdown of NP1 increases the number of excitatory synapses and neuronal excitability in cultured rat cortical neurons and enhances excitatory drive and long-term potentiation in the hippocampus of behaving mice. Moreover, we found that NP1 regulates the surface expression of the Kv7.2 subunit of the Kv7 family of potassium channels that control neuronal excitability. Furthermore, pharmacological activation of Kv7 channels prevents, whereas inhibition mimics, the increase in synaptic proteins evoked by the knockdown of NP1. These results indicate that NP1 negatively regulates excitatory synapse number by modulating neuronal excitability and show that NP1 restricts excitatory synaptic plasticity.


Asunto(s)
Proteína C-Reactiva/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Animales , Proteína C-Reactiva/genética , Células Cultivadas , Corteza Cerebral/citología , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Antagonistas de Receptores de GABA-A/farmacología , Regulación de la Expresión Génica/genética , Hipocampo/citología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores AMPA/genética , Receptores AMPA/metabolismo , Sinapsis/genética , Vigilia/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA