Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 24(38): 9622-9631, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29663546

RESUMEN

Six novel fluoranthene derivatives, namely, three terminally substituted and three bis(fluoranthene) units with fluorene, bithiophene, and carbazole spacers, were obtained through [2+2+2] cycloaddition and characterized completely. Based on the conducted studies, the obtained derivatives can be classified as donor-acceptor (D-A) and acceptor-donor-acceptor (A-D-A) systems, in which the fluoranthene unit acts as an electron-withdrawing unit. The optical results revealed that novel fluoranthene derivatives absorb light in the range λ=236-417 nm, which originates from a π→π* transition within the conjugated system. The compounds exhibit fluorescence that range from deep blue to green, which mainly arises from intramolecular charge transfer (ICT) states. High Stoke shifts and high quantum yields in solution (ϕ=0.22-0.57) and in the solid state (ϕ=0.18-0.44) have been observed for fluoranthene derivatives. All the derivatives display multistep oxidation processes at low potentials. The electronic structure of the presented compounds is additionally supported by time-dependent DFT computations.

2.
Mol Pharm ; 15(10): 4764-4776, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30156420

RESUMEN

In this article, thermal properties, molecular dynamics, crystallization kinetics, and intermolecular interactions in pure naproxen (NAP), its amide (NH2-NAP), and four esters (methyl, Met-NAP; isopropyl, Iso-NAP; hexyl, Hex-NAP; and benzyl, Ben-NAP) have been investigated using differential scanning calorimetry as well as broadband dielectric and Fourier transform infrared spectroscopies. We found that the modification of the NAP molecule by substituting a hydrogen atom from the hydroxyl group strongly inhibits the crystallization tendency of this active pharmaceutical ingredient (API) and simultaneously increases its glass forming ability (GFA). In this context, it is worthwhile to stress that pure naproxen and its amide crystallized very quickly, regardless of the cooling rate. Therefore, these compounds cannot be classified as good glass-formers. On the other hand, ester derivatives of API can be easily vitrified. Moreover, dielectric measurements revealed that with an increasing molecular weight of the substituent, the rate of crystallization process slows down significantly. Consequently, Ben-NAP was characterized by the highest GFA among all investigated API esters. Comprehensive FTIR studies clearly indicated that the strong tendency to create dimeric structures in the nonmodified NAP and NH2-NAP is responsible for their enhanced crystallization. At the first sight, our results stay in contrast to most literature data, showing that H-bonds favor the glass formation ability. However, this effect is usually observed for the materials, which form extensive multidirectional hydrogen bonds and associates. In NAP and NH2-NAP, the situation is much different, since both compounds exist mainly as dimers. Therefore, one can postulate that specific intermolecular interactions are an important parameter determining the GFA of different materials, including APIs.


Asunto(s)
Vidrio/química , Naproxeno/química , Rastreo Diferencial de Calorimetría , Cristalización , Enlace de Hidrógeno , Cinética , Simulación de Dinámica Molecular , Espectroscopía Infrarroja por Transformada de Fourier
3.
Phys Chem Chem Phys ; 20(48): 30200-30208, 2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30489579

RESUMEN

Broadband dielectric and Raman spectroscopies combined with calorimetric measurements and DFT calculations have been used to investigate the molecular dynamics of the benzyl derivative of ibuprofen (Ben-IBU) incorporated into aluminum oxide (AAO) templates of various pore diameters (d = 20 nm and d = 80 nm). Time-dependent experiments on the material confined in pores of d = 20 nm revealed the occurrence of a low activation barrier kinetic process, that was manifested as a variation in the integral intensities of some characteristic vibrations of carboxylic and benzene moieties as well as a shift of the structural relaxation process. Complementary DFT computations enabled us to identify its molecular nature as originating from cis to trans like conformational change. Our results clearly show that molecular rearrangements enforced by the interactions with the pore walls/substrate may affect the properties of the confined systems. Consequently, these effects must be taken into account to understand the dynamics and variation of the glass transition temperature in high (polymers) and low molecular weight glass formers subjected to spatial restrictions at the nanometer scale.

4.
Molecules ; 20(3): 4565-93, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25774490

RESUMEN

New catalytically or high pressure activated reactions and routes, including coupling, double bond migration in allylic systems, and various types of cycloaddition and dihydroamination have been used for the synthesis of novel bithiophene derivatives. Thanks to the abovementioned reactions and routes combined with non-catalytic ones, new acetylene, butadiyne, isoxazole, 1,2,3-triazole, pyrrole, benzene, and fluoranthene derivatives with one, two or six bithiophenyl moieties have been obtained. Basic sources of crucial substrates which include bithiophene motif for catalytic reactions were 2,2'-bithiophene, gaseous acetylene and 1,3-butadiyne.


Asunto(s)
Reacción de Cicloadición/métodos , Tiofenos/síntesis química , Aminación , Catálisis , Estructura Molecular , Tiofenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA