Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
EMBO Rep ; 25(2): 796-812, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177920

RESUMEN

Although many long noncoding RNAs have been discovered in plants, little is known about their biological function and mode of action. Here we show that the drought-induced long intergenic noncoding RNA DANA1 interacts with the L1p/L10e family member protein DANA1-INTERACTING PROTEIN 1 (DIP1) in the cell nucleus of Arabidopsis, and both DANA1 and DIP1 promote plant drought resistance. DANA1 and DIP1 increase histone deacetylase HDA9 binding to the CYP707A1 and CYP707A2 loci. DIP1 further interacts with PWWP3, a member of the PEAT complex that associates with HDA9 and has histone deacetylase activity. Mutation of DANA1 enhances CYP707A1 and CYP707A2 acetylation and expression resulting in impaired drought tolerance, in agreement with dip1 and pwwp3 mutant phenotypes. Our results demonstrate that DANA1 is a positive regulator of drought response and that DANA1 works jointly with the novel chromatin-related factor DIP1 on epigenetic reprogramming of the plant transcriptome during the response to drought.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , ARN Largo no Codificante , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Resistencia a la Sequía , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Sequías , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
PLoS Pathog ; 19(5): e1011374, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37146060

RESUMEN

Aedes albopictus shows a rapid global expansion and dramatic vectorial capacity for various arboviruses, thus posing a severe threat to global health. Although many noncoding RNAs have been confirmed to play functional roles in various biological processes in Ae. albopictus, the roles of circRNA remain a mystery. In the present study, we first performed high-throughput circRNA sequencing in Ae. albopictus. Then, we identified a cysteine desulfurase (CsdA) superfamily gene-originated circRNA, named aal-circRNA-407, which was the third most abundant circRNA in adult females and displayed a fat body highly expressed manifestation and blood feeding-dependent onset. SiRNA-mediated knockdown of circRNA-407 resulted in a decrease in the number of developing follicles and a reduction in follicle size post blood meal. Furthermore, we demonstrated that circRNA-407 can act as a sponge of aal-miR-9a-5p to promote the expression of its target gene Foxl and eventually regulate ovarian development. Our study is the first to report a functional circRNA in mosquitoes, expanding our current understanding of important biological roles in mosquitoes and providing an alternative genetic strategy for mosquito control.


Asunto(s)
Aedes , Arbovirus , MicroARNs , Animales , Femenino , Arbovirus/genética , Aedes/genética , ARN Circular/genética , Mosquitos Vectores/genética , MicroARNs/genética
3.
Plant Physiol ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635971

RESUMEN

Rapid postharvest physiological deterioration (PPD) of cassava (Manihot esculenta Crantz) storage roots is a major constraint that limits the potential of this plant as a food and industrial crop. Extensive studies have been performed to explore the regulatory mechanisms underlying the PPD processes in cassava to understand their molecular and physiological responses. However, the exceptional functional versatility of alternative splicing (AS) remains to be explored during the PPD process in cassava. Here, we identified several aberrantly spliced genes during the early PPD stage. An in-depth analysis of AS revealed that the abscisic acid (ABA) biosynthesis pathway might serve as an additional molecular layer in attenuating the onset of PPD. Exogenous ABA application alleviated PPD symptoms through maintaining ROS generation and scavenging. Interestingly, the intron retention transcript of MeABA1 (ABA DEFICIENT 1) was highly correlated with PPD symptoms in cassava storage roots. RNA yeast three-hybrid and RNA immunoprecipitation assays showed that the serine/arginine-rich protein MeSCL33 (SC35-like splicing factor 33) binds to the precursor mRNA of MeABA1. Importantly, overexpressing MeSCL33 in cassava conferred improved PPD resistance by manipulating the AS and expression levels of MeABA1 and then modulating the endogenous ABA levels in cassava storage roots. Our results uncovered the pivotal role of the ABA biosynthesis pathway and RNA splicing in regulating cassava PPD resistance and proposed the essential roles of MeSCL33 for conferring PPD resistance, broadening our understanding of SR proteins in cassava development and stress responses.

4.
Plant Physiol ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717740

RESUMEN

The circadian system plays a pivotal role in facilitating the ability of crop plants to respond and adapt to fluctuations in their immediate environment effectively. Despite the increasing comprehension of PSEUDO-RESPONSE REGULATORs (PRRs) and their involvement in the regulation of diverse biological processes, including circadian rhythms, photoperiodic control of flowering, and responses to abiotic stress, the transcriptional networks associated with these factors in soybean (Glycine max (L.) Merr.) remain incompletely characterized. In this study, we provide empirical evidence highlighting the significance of GmPRR3b as a crucial mediator in regulating the circadian clock, drought stress response, and abscisic acid (ABA) signaling pathway in soybeans. A comprehensive analysis of DNA affinity purification sequencing and transcriptome data identified 795 putative target genes directly regulated by GmPRR3b. Among them, a total of 570 exhibited a significant correlation with the response to drought, and eight genes were involved in both the biosynthesis and signaling pathways of ABA. Notably, GmPRR3b played a pivotal role in the negative regulation of the drought response in soybeans by suppressing the expression of abscisic acid responsive element-binding factor 3 (GmABF3). Additionally, the overexpression of GmABF3 exhibited an increased ability to tolerate drought conditions, and it also restored the hypersensitive phenotype of the GmPRR3b overexpressor. Consistently, studies on the manipulation of GmPRR3b gene expression and genome editing in plants revealed contrasting reactions to drought stress. The findings of our study collectively provide compelling evidence that emphasizes the significant contribution of the GmPRR3b-GmABF3 module in enhancing drought tolerance in soybean plants. Moreover, the transcriptional network of GmPRR3b provides valuable insights into the intricate interactions between this gene and the fundamental biological processes associated with plant adaptation to diverse environmental conditions.

5.
PLoS Genet ; 18(6): e1010280, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35737710

RESUMEN

Aedes albopictus is one of the most invasive insect species in the world and an effective vector for many important arboviruses. We reported previously that Ae. albopictus Nix (AalNix) is the male-determining factor of this species. However, whether AalNix alone is sufficient to initiate male development is unknown. Transgenic lines that express each of the three AalNix isoforms from the native promoter were obtained using piggyBac transformation. We verified the stable expression of AalNix isoforms in the transgenic lines and confirm that one isoform, AalNix3&4, is sufficient to convert females into fertile males (pseudo-males) that are indistinguishable from wild-type males. We also established a stable sex-converted female mosquito strain, AalNix3&4-♂4-pseudo-male. The pseudo-male mosquitoes can fly and mate normally with wild-type female, although their mating competitiveness is lower than wild-type. This work further clarifies the role of AalNix in the sex determination pathway and will facilitate the development of Ae. albopictus control strategies that rely on male-only releases such as SIT and sex-ratio distortion.


Asunto(s)
Aedes , Aedes/genética , Aedes/metabolismo , Animales , Animales Modificados Genéticamente , Femenino , Especies Introducidas , Masculino , Mosquitos Vectores/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reproducción
6.
BMC Genomics ; 25(1): 336, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570743

RESUMEN

The Asian tiger mosquito, Aedes albopictus, is a global invasive species, notorious for its role in transmitting dangerous human arboviruses such as dengue and Chikungunya. Although hematophagous behavior is repulsive, it is an effective strategy for mosquitoes like Aedes albopictus to transmit viruses, posing a significant risk to human health. However, the fragmented nature of the Ae. albopictus genome assembly has been a significant challenge, hindering in-depth biological and genetic studies of this mosquito. In this research, we have harnessed a variety of technologies and implemented a novel strategy to create a significantly improved genome assembly for Ae. albopictus, designated as AealbF3. This assembly boasts a completeness rate of up to 98.1%, and the duplication rate has been minimized to 1.2%. Furthermore, the fragmented contigs or scaffolds of AealbF3 have been organized into three distinct chromosomes, an arrangement corroborated through syntenic plot analysis, which compared the genetic structure of Ae. albopictus with that of Ae. aegypti. Additionally, the study has revealed a phylogenetic relationship suggesting that the PGANT3 gene is implicated in the hematophagous behavior of Ae. albopictus. This involvement was preliminarily substantiated through RNA interference (RNAi) techniques and behavioral experiment. In summary, the AealbF3 genome assembly will facilitate new biological insights and intervention strategies for combating this formidable vector of disease. The innovative assembly process employed in this study could also serve as a valuable template for the assembly of genomes in other insects characterized by high levels of heterozygosity.


Asunto(s)
Aedes , Mosquitos Vectores , Animales , Humanos , Mosquitos Vectores/genética , Filogenia , Conducta Alimentaria
7.
J Exp Bot ; 75(3): 1051-1062, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-37864556

RESUMEN

Identification and characterization of soybean germplasm and gene(s)/allele(s) for salt tolerance is an effective way to develop improved varieties for saline soils. Previous studies identified GmCHX1 (Glyma03g32900) as a major salt tolerance gene in soybean, and two main functional variations were found in the promoter region (148/150 bp insertion) and the third exon with a retrotransposon insertion (3.78 kb). In the current study, we identified four salt-tolerant soybean lines, including PI 483460B (Glycine soja), carrying the previously identified salt-sensitive variations at GmCHX1, suggesting new gene(s) or new functional allele(s) of GmCHX1 in these soybean lines. Subsequently, we conducted quantitative trait locus (QTL) mapping in a recombinant-inbred line population (Williams 82 (salt-sensitive) × PI 483460B) to identify the new salt tolerance loci/alleles. A new locus, qSalt_Gm18, was mapped on chromosome 18 associated with leaf scorch score. Another major QTL, qSalt_Gm03, was identified to be associated with chlorophyll content ratio and leaf scorch score in the same chromosomal region of GmCHX1 on chromosome 3. Novel variations in a STRE (stress response element) cis-element in the promoter region of GmCHX1 were found to regulate the salt-inducible expression of the gene in these four newly identified salt-tolerant lines including PI 483460B. This new allele of GmCHX1 with salt-inducible expression pattern provides an energy cost efficient (conditional gene expression) strategy to protect soybean yield in saline soils without yield penalty under non-stress conditions. Our results suggest that there might be no other major salt tolerance locus similar to GmCHX1 in soybean germplasm, and further improvement of salt tolerance in soybean may rely on gene-editing techniques instead of looking for natural variations.


Asunto(s)
Glycine max , Sitios de Carácter Cuantitativo , Glycine max/genética , Tolerancia a la Sal/genética , Regiones Promotoras Genéticas/genética , Suelo , Expresión Génica
8.
Theor Appl Genet ; 137(3): 62, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418640

RESUMEN

KEY MESSAGE: A major quantitative trait locus (QTL) for the hundred-seed weight (HSW) was identified and confirmed in the two distinct soybean populations, and the target gene GmCYP82C4 underlying this locus was identified that significantly associated with soybean seed weight, and it was selected during the soybean domestication and improvement process. Soybean is a major oil crop for human beings and the seed weight is a crucial goal of soybean breeding. However, only a limited number of target genes underlying the quantitative trait loci (QTLs) controlling seed weight in soybean are known so far. In the present study, six loci associated with hundred-seed weight (HSW) were detected in the first population of 573 soybean breeding lines by genome-wide association study (GWAS), and 64 gene models were predicted in these candidate QTL regions. The QTL qHSW_1 exhibits continuous association signals on chromosome four and was also validated by region association study (RAS) in the second soybean population (409 accessions) with wild, landrace, and cultivar soybean accessions. There were seven genes in qHSW_1 candidate region by linkage disequilibrium (LD) block analysis, and only Glyma.04G035500 (GmCYP82C4) showed specifically higher expression in flowers, pods, and seeds, indicating its crucial role in the soybean seed development. Significant differences in HSW trait were detected when the association panels are genotyped by single-nucleotide polymorphisms (SNPs) in putative GmCYP82C4 promoter region. Eight haplotypes were generated by six SNPs in GmCYP82C4 in the second soybean population, and two superior haplotypes (Hap2 and Hap4) of GmCYP82C4 were detected with average HSW of 18.27 g and 18.38 g, respectively. The genetic diversity of GmCYP82C4 was analyzed in the second soybean population, and GmCYP82C4 was most likely selected during the soybean domestication and improvement process, leading to the highest proportion of Hap2 of GmCYP82C4 both in landrace and cultivar subpopulations. The QTLs and GmCYP82C4 identified in this study provide novel genetic resources for soybean seed weight trait, and the GmCYP82C4 could be used for soybean molecular breeding to develop desirable seed weight in the future.


Asunto(s)
Glycine max , Sitios de Carácter Cuantitativo , Humanos , Glycine max/genética , Estudio de Asociación del Genoma Completo , Domesticación , Fitomejoramiento , Semillas , Polimorfismo de Nucleótido Simple
9.
BMC Biol ; 21(1): 194, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704988

RESUMEN

BACKGROUND: Worldwide invasion and expansion of Aedes albopictus, an important vector of dengue, chikungunya, and Zika viruses, has become a serious concern in global public health. Chemical insecticides are the primary means currently available to control the mosquito populations. However, long-term and large-scale use of insecticides has selected for resistance in the mosquito that is accompanied by a genetic load that impacts fitness. RESULTS: A number of laboratory strains representing different resistance mechanisms were isolated and identified from laboratory-derived, deltamethrin-resistant Ae. albopictus recovered in previous work. Resistance levels and fitness costs of the strains were evaluated and compared to characterize the evolution of the resistance genotypes and phenotypes. The heterozygous F1534S mutation (1534F/S) in the voltage gated sodium channel (vgsc) gene product (VGSC), first detected in early stages of resistance evolution, not only confers high-level resistance, but also produces no significant fitness costs, leading to the rapid spread of resistance in the population. This is followed by the increase in frequency of homozygous F1534S (1534S/S) mosquitoes that have significant fitness disadvantages, prompting the emergence of an unlinked I1532T mutation with fewer side effects and a mating advantage better adapted to the selection and reproductive pressures imposed in the experiments. Metabolic resistance with no significant fitness cost and mediating a high-tolerance resistance phenotype may play a dominant role in the subsequent evolution of resistance. The different resistant strains had similar vector competence for dengue virus type-2 (DENV-2). Furthermore, a comparative analysis of vectorial capacity revealed that increased survival due to deltamethrin resistance balanced the negative fitness cost effects and contributed to the risk of dengue virus (DENV) transmission by resistant populations. The progressive evolution of resistance results in mosquitoes with both target-site insensitivity and metabolic resistance with lower fitness costs, which further leads to resistant populations with both high resistance levels and vectorial capacity. CONCLUSIONS: This study reveals a possible mechanism for the evolution of deltamethrin resistance in Aedes albopictus. These findings will help guide practical strategies for insecticide use, resistance management and the prevention and control of mosquito-borne disease.


Asunto(s)
Aedes , Virus del Dengue , Insecticidas , Infección por el Virus Zika , Virus Zika , Animales , Aedes/genética , Virus del Dengue/genética , Insecticidas/farmacología , Mosquitos Vectores/genética
10.
J Biochem Mol Toxicol ; 37(3): e23265, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36416364

RESUMEN

Prostate cancer (PCa) is a challenging issue for men's health worldwide due to its uncontrolled proliferation and high metastatic potential. Increasing evidence has supported plant extracts and natural plant derivatives as promising antitumor therapy with less toxic side effects. Yuanhuacine is an active component isolated from Daphne genkwa and can effectively suppress the tumorigenesis of several cancers. However, its role in PCa remains unclear. In this study, yuanhuacine dose-dependently inhibited the proliferation and induced apoptosis of PCa cells. Moreover, yuanhuacine also restrained the invasion and migration of PCa cells. Mechanically, yuanhuacine decreased the ubiquitination and degradation of p53 protein, and ultimately increased p53 levels, which was regulated by inhibiting the phosphorylation and total protein levels of mouse double minute 2 (MDM2). Moreover, elevation of MDM2 reversed the suppressive efficacy of yuanhuacine in PCa cell viability, invasion, and migration. The network pharmacologic and bioinformatics analysis confirmed that MDM2 might be a common target of D. genkwa and LINC00665. Furthermore, yuanhuacine inhibited LINC00665 expression. Upregulation of LINC00665 reversed yuanhuacine-mediated inhibition in MDM2 protein expression and suppressed p53 levels by enhancing its ubiquitination in yuanhuacine-treated cells. Importantly, the inhibitory effects of yuanhuacine on cell viability and metastatic potential were offset after LINC00665 elevation. Together, the current findings highlight that yuanhuacine may possess tumor-suppressive efficacy by inhibiting LINC00665-mediated MDM2/p53 ubiquitination signaling. Therefore, this study indicates that yuanhuacine may be a promising candidate for the treatment of PCa.


Asunto(s)
Carcinoma , Neoplasias de la Próstata , ARN Largo no Codificante , Humanos , Masculino , Ratones , Animales , Proteínas Proto-Oncogénicas c-mdm2 , Proteína p53 Supresora de Tumor/metabolismo , ARN Largo no Codificante/metabolismo , Próstata/metabolismo , Ubiquitinación , Neoplasias de la Próstata/metabolismo , Carcinogénesis/metabolismo , Línea Celular Tumoral , Apoptosis , Proliferación Celular/genética
11.
Plant Cell Physiol ; 61(1): 178-191, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31596482

RESUMEN

Serine/arginine-rich (SR) proteins have an essential role in the splicing of pre-messenger RNA (pre-mRNA) in eukaryote. Pre-mRNA with introns can be alternatively spliced to generate multiple transcripts, thereby increasing adaptation to the external stress conditions in planta. However, pre-mRNA of SR proteins can also be alternatively spliced in different plant tissues and in response to diverse stress treatments, indicating that SR proteins might be involved in regulating plant development and adaptation to environmental changes. We identified and named 18 SR proteins in cassava and systematically studied their splicing and transcriptional changes under tissue-specific and abiotic stress conditions. Fifteen out of 18 SR genes showed alternative splicing in the tissues. 45 transcripts were found from 18 SR genes under normal conditions, whereas 55 transcripts were identified, and 21 transcripts were alternate spliced in some SR genes under salt stress, suggesting that SR proteins might participate in the plant adaptation to salt stress. We then found that overexpression of MeSR34 in Arabidopsis enhanced the tolerance to salt stress through maintaining reactive oxygen species homeostasis and increasing the expression of calcineurin B-like proteins (CBL)-CBL-interacting protein kinases and osmotic stress-related genes. Therefore, our findings highlight the critical role of cassava SR proteins as regulators of RNA splicing and salt tolerance in planta.


Asunto(s)
Empalme Alternativo/fisiología , Manihot/genética , Manihot/fisiología , Proteínas Nucleares/genética , Proteínas de Unión al ARN/genética , Estrés Fisiológico/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia , Plantas Modificadas Genéticamente , Precursores del ARN/genética , Empalme del ARN , ARN de Planta/genética , Proteínas de Unión al ARN/clasificación , Especies Reactivas de Oxígeno/metabolismo , Tolerancia a la Sal/genética , Tolerancia a la Sal/fisiología , Análisis de Secuencia de Proteína , Transcriptoma
12.
Nucleic Acids Res ; 46(4): 1777-1792, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29228330

RESUMEN

Soil salinity is a significant threat to sustainable agricultural production worldwide. Plants must adjust their developmental and physiological processes to cope with salt stress. Although the capacity for adaptation ultimately depends on the genome, the exceptional versatility in gene regulation provided by the spliceosome-mediated alternative splicing (AS) is essential in these adaptive processes. However, the functions of the spliceosome in plant stress responses are poorly understood. Here, we report the in-depth characterization of a U1 spliceosomal protein, AtU1A, in controlling AS of pre-mRNAs under salt stress and salt stress tolerance in Arabidopsis thaliana. The atu1a mutant was hypersensitive to salt stress and accumulated more reactive oxygen species (ROS) than the wild-type under salt stress. RNA-seq analysis revealed that AtU1A regulates AS of many genes, presumably through modulating recognition of 5' splice sites. We showed that AtU1A is associated with the pre-mRNA of the ROS detoxification-related gene ACO1 and is necessary for the regulation of ACO1 AS. ACO1 is important for salt tolerance because ectopic expression of ACO1 in the atu1a mutant can partially rescue its salt hypersensitive phenotype. Our findings highlight the critical role of AtU1A as a regulator of pre-mRNA processing and salt tolerance in plants.


Asunto(s)
Empalme Alternativo , Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Factores de Empalme de ARN/fisiología , Tolerancia a la Sal/genética , Transporte Activo de Núcleo Celular , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mutación , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/metabolismo , Empalmosomas/metabolismo
13.
Plant J ; 93(2): 227-234, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29155472

RESUMEN

The mitochondria and plastids of eukaryotic cells evolved from endosymbiotic prokaryotes. DNA from the endosymbionts has bombarded nuclei since the ancestral prokaryotes were engulfed by a precursor of the nucleated eukaryotic host. An experimental confirmation regarding the molecular mechanisms responsible for organelle DNA incorporation into nuclei has not been performed until the present analysis. Here we introduced double-stranded DNA breaks into the nuclear genome of tobacco through inducible expression of I-SceI, and showed experimentally that tobacco chloroplast DNAs insert into nuclear genomes through double-stranded DNA break repair. Microhomology-mediated linking of disparate segments of chloroplast DNA occurs frequently during healing of induced nuclear double-stranded breaks (DSB) but the resulting nuclear integrants are often immediately unstable. Non-Mendelian inheritance of a selectable marker (neo), used to identify plastid DNA transfer, was observed in the progeny of about 50% of lines emerging from the screen. The instability of these de novo nuclear insertions of plastid DNA (nupts) was shown to be associated with deletion not only of the nupt itself but also of flanking nuclear DNA within one generation of transfer. This deletion of pre-existing nuclear DNA suggests that the genetic impact of organellar DNA transfer to the nucleus is potentially far greater than previously thought.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Genoma de Planta/genética , Nicotiana/genética , Núcleo Celular/genética , ADN de Cloroplastos/genética , Plastidios/genética , Simbiosis
14.
Proc Natl Acad Sci U S A ; 112(44): E5907-15, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26483478

RESUMEN

The Asian tiger mosquito, Aedes albopictus, is a highly successful invasive species that transmits a number of human viral diseases, including dengue and Chikungunya fevers. This species has a large genome with significant population-based size variation. The complete genome sequence was determined for the Foshan strain, an established laboratory colony derived from wild mosquitoes from southeastern China, a region within the historical range of the origin of the species. The genome comprises 1,967 Mb, the largest mosquito genome sequenced to date, and its size results principally from an abundance of repetitive DNA classes. In addition, expansions of the numbers of members in gene families involved in insecticide-resistance mechanisms, diapause, sex determination, immunity, and olfaction also contribute to the larger size. Portions of integrated flavivirus-like genomes support a shared evolutionary history of association of these viruses with their vector. The large genome repertory may contribute to the adaptability and success of Ae. albopictus as an invasive species.


Asunto(s)
Aedes/genética , Evolución Molecular , Genoma de los Insectos , Aedes/clasificación , Aedes/fisiología , Animales , Filogenia
15.
Emerg Infect Dis ; 23(7): 1085-1091, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28430562

RESUMEN

In China, the prevention and control of Zika virus disease has been a public health threat since the first imported case was reported in February 2016. To determine the vector competence of potential vector mosquito species, we experimentally infected Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus mosquitoes and determined infection rates, dissemination rates, and transmission rates. We found the highest vector competence for the imported Zika virus in Ae. aegypti mosquitoes, some susceptibility of Ae. albopictus mosquitoes, but no transmission ability for Cx. quinquefasciatus mosquitoes. Considering that, in China, Ae. albopictus mosquitoes are widely distributed but Ae. aegypti mosquito distribution is limited, Ae. albopictus mosquitoes are a potential primary vector for Zika virus and should be targeted in vector control strategies.


Asunto(s)
Aedes/virología , Culex/virología , Insectos Vectores/virología , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/transmisión , Virus Zika , Animales , Línea Celular , China/epidemiología , Femenino , ARN Viral , Carga Viral , Replicación Viral , Virus Zika/genética
16.
Tumour Biol ; 36(10): 7531-7, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25916211

RESUMEN

To find potential serum biomarkers for upper tract urothelial carcinomas (UTUCs) via (1)H nuclear magnetic resonance ((1)H NMR)-based metabolomic analysis. Serum specimens collected from 34 healthy individuals and 39 patients with UTUCs were subjected to (1)H NMR-based metabolomic analysis. Principal component and orthogonal partial least squares discriminant analyses were used to analyse the data. Compared with serum samples from healthy subjects, samples from UTUC patients showed elevated levels of lactate and creatinine as well as decreased levels of glucose, glutamine and taurine. Serum low-density lipoprotein/very low-density lipoprotein, valine and glycoprotein levels showed decreasing trends whereas serum polyunsaturated fatty acids and 3,7-dimethyluric acid level presented increasing trends in UTUC patients. (1)H NMR-based metabolomic analysis of serum enhances the current understanding of the mechanisms involved in UTUC development. The present analysis may be a valuable tool for UTUC detection.


Asunto(s)
Biomarcadores/sangre , Carcinoma/sangre , Carcinoma/metabolismo , Metaboloma/fisiología , Suero/metabolismo , Sistema Urinario/metabolismo , Neoplasias Urológicas/sangre , Anciano , Estudios de Casos y Controles , Femenino , Humanos , Espectroscopía de Resonancia Magnética/métodos , Masculino , Metabolómica/métodos , Neoplasias Urológicas/metabolismo
17.
Infect Dis Poverty ; 12(1): 48, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37161462

RESUMEN

BACKGROUND: Dengue virus (DENV) is a major public health threat, with Aedes albopictus being the confirmed vector responsible for dengue epidemics in Guangzhou, China. Mosquito densoviruses (MDVs) are pathogenic mosquito-specific viruses, and a novel MDV was previously isolated from Ae. albopictus in Guangzhou. This study aims to determine the prevalence of MDVs in wild Ae. albopictus populations and investigate their potential interactions with DENV and impact on vector susceptibility for DENV. METHODS: The prevalence of MDV in wild mosquitoes in China was investigated using open access sequencing data and PCR detection in Ae. albopictus in Guangzhou. The viral infection rate and titers in MDV-persistent C6/36 cells were evaluated at 12, 24, 48, 72, 96, and 120 h post infection (hpi) by indirect immunofluorescence assay (IFA) and real time quantitative PCR (RT-qPCR). The midgut infection rate (MIR), dissemination rate (DR), and salivary gland infection rate (SGIR) in various tissues of MDV-infected mosquitoes were detected and quantified at 0, 5, 10, and 15 days post infection (dpi) by RT-PCR and RT-qPCR. The chi-square test evaluated dengue virus serotype 2 (DENV-2) and Aedes aegypti densovirus (AaeDV) infection rates and related indices in mosquitoes, while Tukey's LSD and t-tests compared viral titers in C6/36 cells and tissues over time. RESULTS: The results revealed a relatively wide distribution of MDVs in Aedes, Culex, and Anopheles mosquitoes in China and an over 68% positive rate. In vitro, significant reductions in DENV-2 titers in supernatant at 120 hpi, and an apparent decrease in DENV-2-positive cells at 96 and 120 hpi were observed. In vivo, DENV-2 in the ovaries and salivary glands was first detected at 10 dpi in both monoinfected and superinfected Ae. albopictus females, while MDV superinfection with DENV-2 suppressed the salivary gland infection rate at 15 dpi. DENV-2 titer in the ovary and salivary glands of Ae. albopictus was reduced in superinfected mosquitoes at 15 dpi. CONCLUSIONS: MDVs is widespread in natural mosquito populations, and replication of DENV-2 is suppressed in MDV-infected Ae. albopictus, thus reducing vector susceptibility to DENV-2. Our study supports the hypothesis that MDVs may contribute to reducing transmission of DENV and provides an alternative strategy for mosquito-transmitted disease control.


Asunto(s)
Aedes , Virus del Dengue , Densovirinae , Densovirus , Femenino , Animales , Densovirus/genética , Serogrupo , Mosquitos Vectores
18.
Mol Plant ; 16(8): 1339-1353, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37553833

RESUMEN

Tens of thousands of long non-coding RNAs have been uncovered in plants, but few of them have been comprehensively studied for their biological function and molecular mechanism of their mode of action. Here, we show that the Arabidopsis long non-coding RNA DANA2 interacts with an AP2/ERF transcription factor ERF84 in the cell nucleus and then affects the transcription of JMJ29 that encodes a Jumonji C domain-containing histone H3K9 demethylase. Both RNA sequencing (RNA-seq) and genetic analyses demonstrate that DANA2 positively regulates drought stress responses through JMJ29. JMJ29 positively regulates the expression of ERF15 and GOLS2 by modulation of H3K9me2 demethylation. Accordingly, mutation of JMJ29 causes decreased ERF15 and GOLS2 expression, resulting in impaired drought tolerance, in agreement with drought-sensitive phenotypes of dana2 and erf84 mutants. Taken together, these results demonstrate that DANA2 is a positive regulator of drought response and works jointly with the transcriptional activator ERF84 to modulate JMJ29 expression in plant response to drought.


Asunto(s)
Arabidopsis , ARN Largo no Codificante , Histonas/metabolismo , Resistencia a la Sequía , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas/genética , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/genética , Proteínas de Plantas/metabolismo
19.
Dev Cell ; 58(13): 1206-1217.e4, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37290444

RESUMEN

In eukaryotes, transcription factors are a crucial element in the regulation of gene expression, and nuclear translocation is the key to the function of transcription factors. Here, we show that the long intergenic noncoding RNA ARTA interacts with an importin ß-like protein, SAD2, through a long noncoding RNA-binding region embedded in the carboxyl terminal, and then it blocks the import of the transcription factor MYB7 into the nucleus. Abscisic acid (ABA)-induced ARTA expression can positively regulate ABI5 expression by fine-tuning MYB7 nuclear trafficking. Therefore, the mutation of arta represses ABI5 expression, resulting in desensitization to ABA, thereby reducing Arabidopsis drought tolerance. Our results demonstrate that lncRNA can hijack a nuclear trafficking receptor to modulate the nuclear import of a transcription factor during plant responses to environmental stimuli.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , ARN Largo no Codificante , Arabidopsis/metabolismo , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , beta Carioferinas/genética , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Semillas/metabolismo , Carioferinas/genética , Carioferinas/metabolismo
20.
Nat Commun ; 14(1): 2292, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085529

RESUMEN

The initial signals governing sex determination vary widely among insects. Here we show that Armigeres subalbatus M factor (AsuMf), a male-specific duplication of an autosomal gene of the Drosophila behaviour/human splicing (DBHS) gene family, is the potential primary signal for sex determination in the human filariasis vector mosquito, Ar. subalbatus. Our results show that AsuMf satisfies two fundamental requirements of an M factor: male-specific expression and early embryonic expression. Ablations of AsuMf result in a shift from male- to female-specific splicing of doublesex and fruitless, leading to feminization of males both in morphology and general transcription profile. These data support the conclusion that AsuMf is essential for male development in Ar. subalbatus and reveal a male-determining factor that is derived from duplication and subsequent neofunctionalization of a member of the conserved DBHS family.


Asunto(s)
Culicidae , Filariasis , Animales , Femenino , Humanos , Masculino , Culicidae/genética , Drosophila , Familia , Mosquitos Vectores/genética , Diferenciación Sexual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA