Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nanoscale Adv ; 6(15): 3759-3774, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39050958

RESUMEN

Non-metal doping of titanium dioxide (TiO2) has been widely investigated, because it can facilely improve the optical response of TiO2 under visible light excitation in environmental pollution treatments. In the ongoing efforts, however, little consideration has been given to the use of harmful marine organisms as dopants. Here, we employed the natural mucus proteins of the large harmful jellyfish Aurelia coerulea and Nemopilema nomurai, which have frequently bloomed in East Asian marginal seas in recent decades, to synthesize mesoporous nitrogen-doped TiO2 nanocrystals modified with carbon (N-TiO2/C) by a simple hydrothermal method. These nanocrystals were composed of predominantly anatase phase and a small amount of brookite phase TiO2. Their mesoporous structures changed with the variation of the volume ratio of jellyfish mucus added to tetrabutyl titanate (TBT). At the same ratio, larger surface area and pore volume but smaller pore size were observed in N-TiO2/C nanocrystals from N. nomurai rather than A. coerulea. Nitrogen was determinately doped into the lattice of the prepared nanocrystals and the carbon species were modified on their surfaces, which narrowed the band gap, facilitated the separation of photogenerated electron-hole pairs and favored the absorption of visible light, thus improving their visible light photocatalytic activity. The photocatalytic degradation efficiency of Rhodamine B (RhB) under visible light irradiation first increased and then decreased with the gradual increase of the volume ratio of jellyfish mucus proteins to TBT. The maximum reached 97.52% in 20 min from N-TiO2/C nanocrystals synthesized using N. nomurai mucus at the volume ratio of 4 : 1, which showed a remarkably strong visible light absorption, lower band gap energy and smaller electron transfer resistance. These N-TiO2/C nanocrystals also had a relatively stable crystal structure in multiple degradation reactions. The main active species including superoxide radicals (˙O2 -), photogenerated holes (h+) and hydroxyl radicals (˙OH) were found to play a major role in the degradation process of RhB. This study highlights the potential high-value reapplication of harmful jellyfish mucus as a natural organic matrix in fabricating advanced materials with optimized functional properties.

2.
Mar Pollut Bull ; 198: 115904, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38096696

RESUMEN

Organophosphate esters (OPEs) as substitutes for PBDEs have been widely detected in the marine environment, while little is known about the pollution characteristics and variation of OPEs in estuarine environments with complex hydrodynamic conditions and land-based input. Yangtze River Estuary (YRE) is a typical highly urbanized and industrialized estuary, with a complex hydrological environment and geochemical behavior. This study found that the concentrations of OPEs in both seawater and sediments in the YRE were higher in spring than in summer. Alkyl OPEs were the first contributor, with TnBP and TiBP as the main components, where the contribution of alkyl OPEs had exceeded 75 % in both seawater and sediments in spring, and 60 % in summer seawater, and even 80 % in sediments. In spring, OPEs peaked in the central to southern region near the YRE. In summer, OPEs were mainly concentrated in the southern branch waterway and southern nearshore area of the YRE and showed a decreasing trend to the northeast. The OPEs in the sediments were mainly concentrated in the Yangtze River Mud Area (YREMA) and the Zhe-Min Coastal Mud Area (ZMCMA). Based on the fugacity model and principal component analysis, sediments could be released into the aquatic environment as an endogenous source, and exogenous sources were mainly municipal and industrial sewage discharge sources, urban and marine traffic discharge sources, and atmospheric deposition sources. The ecological risk analysis showed that the Σ14OPEs had exhibited a low to moderate ecological risk in the southern branch waterway and the south-central region offshore.


Asunto(s)
Retardadores de Llama , Contaminantes Químicos del Agua , Estuarios , Ríos , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Agua de Mar , Organofosfatos/análisis , Medición de Riesgo , China , Ésteres/análisis , Retardadores de Llama/análisis
3.
Mar Pollut Bull ; 206: 116708, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38986395

RESUMEN

As the substitutes of polybrominated diphenyl ethers, organophosphate esters (OPEs) with high concentrations have accumulated in the estuaries, bays, and harbors. However, limited information is available about the OPEs in the estuary organism categories, especially under the multiple industrial pressure. This study investigated the occurrence, bioaccumulation and human consumption implication in wild marine organisms from the Yellow River Estuary, where located many petroleum and chemical manufacturing industries. This study found that concentrations of Σ13OPEs ranged from 547 ng/L to 1164 ng/L in seawater (median: 802 ng/L), from 384 to 1366 ng/g dw in the sediment (median: 601 ng/g dw), and from 419 to 959 ng/g dw (median: 560 ng/g dw) in the marine organisms. The congener compositions in the organisms were dominated by alkyl-OPEs (80.7 %), followed by halogenated-OPEs (18.8 %) and aryl-OPEs (0.5 %). Based on the principal component analysis, petrochemical pollution, and industrial wastewater discharge were distinguished as the main plausible sources of OPEs to the YRE ecosystem. Most OPEs had potential or strong bioaccumulation capacity on the organisms, with a positive correlation between log BAF (Bioaccumulation Factor) and log Kow of OPEs. The highest estimated daily intake value of OPEs was tri-n-propyl phosphate, exceeding 300 ng/kg·bw/day via consuming fish. The highest hazard quotients from OPEs ranged from 0.001 to 0.1, indicating a low risk to human health by consuming marine organisms in the YRE. As the consumption of OPEs increases year by year, the risks of OPEs still cannot be ignored.


Asunto(s)
Organismos Acuáticos , Bioacumulación , Monitoreo del Ambiente , Ésteres , Estuarios , Organofosfatos , Contaminantes Químicos del Agua , China , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Organismos Acuáticos/metabolismo , Ésteres/metabolismo , Ésteres/análisis , Animales , Organofosfatos/metabolismo , Humanos , Ríos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA