Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 568(7751): 240-243, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30944466

RESUMEN

The plant hormone auxin has crucial roles in almost all aspects of plant growth and development. Concentrations of auxin vary across different tissues, mediating distinct developmental outcomes and contributing to the functional diversity of auxin. However, the mechanisms that underlie these activities are poorly understood. Here we identify an auxin signalling mechanism, which acts in parallel to the canonical auxin pathway based on the transport inhibitor response1 (TIR1) and other auxin receptor F-box (AFB) family proteins (TIR1/AFB receptors)1,2, that translates levels of cellular auxin to mediate differential growth during apical-hook development. This signalling mechanism operates at the concave side of the apical hook, and involves auxin-mediated C-terminal cleavage of transmembrane kinase 1 (TMK1). The cytosolic and nucleus-translocated C terminus of TMK1 specifically interacts with and phosphorylates two non-canonical transcriptional repressors of the auxin or indole-3-acetic acid (Aux/IAA) family (IAA32 and IAA34), thereby regulating ARF transcription factors. In contrast to the degradation of Aux/IAA transcriptional repressors in the canonical pathway, the newly identified mechanism stabilizes the non-canonical IAA32 and IAA34 transcriptional repressors to regulate gene expression and ultimately inhibit growth. The auxin-TMK1 signalling pathway originates at the cell surface, is triggered by high levels of auxin and shares a partially overlapping set of transcription factors with the TIR1/AFB signalling pathway. This allows distinct interpretations of different concentrations of cellular auxin, and thus enables this versatile signalling molecule to mediate complex developmental outcomes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas F-Box/metabolismo , Ácidos Indolacéticos/antagonistas & inhibidores , Mutación , Reguladores del Crecimiento de las Plantas/antagonistas & inhibidores , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Receptores de Superficie Celular/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34099554

RESUMEN

Differential concentrations of phytohormone trigger distinct outputs, which provides a mechanism for the plasticity of plant development and an adaptation strategy among plants to changing environments. However, the underlying mechanisms of the differential responses remain unclear. Here we report that a high concentration of auxin, distinct from the effect of low auxin concentration, enhances abscisic acid (ABA) responses in Arabidopsis thaliana, which partially relies on TRANS-MEMBERANE KINASE 1 (TMK1), a key regulator in auxin signaling. We show that high auxin and TMK1 play essential and positive roles in ABA signaling through regulating ABA INSENSITIVE 1 and 2 (ABI1/2), two negative regulators of the ABA pathway. TMK1 inhibits the phosphatase activity of ABI2 by direct phosphorylation of threonine 321 (T321), a conserved phosphorylation site in ABI2 proteins, whose phosphorylation status is important for both auxin and ABA responses. This TMK1-dependent auxin signaling in the regulation of ABA responses provides a possible mechanism underlying the high auxin responses in plants and an alternative mechanism involved in the coordination between auxin and ABA signaling.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Epistasis Genética , Fosforilación , Fosfotreonina/metabolismo , Unión Proteica
3.
Nat Commun ; 11(1): 679, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32015349

RESUMEN

Auxin determines the developmental fate of plant tissues, and local auxin concentration is precisely controlled. The role of auxin transport in modulating local auxin concentration has been widely studied but the regulation of local auxin biosynthesis is less well understood. Here, we show that TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA1), a key enzyme in the auxin biosynthesis pathway in Arabidopsis thaliana is phosphorylated at Threonine 101 (T101). T101 phosphorylation status can act as an on/off switch to control TAA1-dependent auxin biosynthesis and is required for proper regulation of root meristem size and root hair development. This phosphosite is evolutionarily conserved suggesting post-translational regulation of auxin biosynthesis may be a general phenomenon. In addition, we show that auxin itself, in part via TRANS-MEMBRANE KINASE 4 (TMK4), can induce T101 phosphorylation of TAA1 suggesting a self-regulatory loop whereby local auxin signalling can suppress biosynthesis. We conclude that phosphorylation-dependent control of TAA1 enzymatic activity may contribute to regulation of auxin concentration in response to endogenous and/or external cues.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Transducción de Señal/fisiología , Triptófano-Transaminasa/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico/fisiología , Regulación de la Expresión Génica de las Plantas , Marchantia/metabolismo , Meristema/metabolismo , Simulación del Acoplamiento Molecular , Mutación , Fosforilación , Filogenia , Raíces de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas , Triptófano-Transaminasa/química , Triptófano-Transaminasa/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA