Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 44(9): 1826-1840, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37095199

RESUMEN

Obesity contributes to the progression of various chronic diseases, and shortens life expectancy. With abundant mitochondria, brown adipose tissue (BAT) dissipates energy through heat to limit weight gain and metabolic dysfunction in obesity. Our previous studies have shown that aurantio-obtusin (AO), a bioactive ingredient in Chinese traditional medicine Cassiae semen significantly improves hepatic lipid metabolism in a steatotic mouse model. In the current study we investigated the effects of AO on lipid metabolism in the BAT of diet-induced obesity mice and in oleic acid and palmitic acid (OAPA)-stimulated primary mature BAT adipocytes. Obese mice were established by feeding a HFHS diet for 4 weeks, and then administered AO (10 mg/kg, i.g.) for another 4 weeks. We showed that AO administration significantly increased the weight of BAT and accelerated energy expenditure to protect the weight increase in the obese mice. Using RNA sequencing and molecular biology analysis we found that AO significantly enhanced mitochondrial metabolism and UCP1 expression by activating PPARα both in vivo and in vitro in the primary BAT adipocytes. Interestingly, AO administration did not improve metabolic dysfunction in the liver and white adipose tissue of obese mice after interscapular BAT excision. We demonstrated that low temperature, a trigger of BAT thermogenesis, was not a decisive factor for AO to stimulate the growth and activation of BATs. This study uncovers a regulatory network of AO in activating BAT-dependent lipid consumption and brings up a new avenue for the pharmaceutical intervention in obesity and related comorbidities.


Asunto(s)
Tejido Adiposo Pardo , PPAR alfa , Ratones , Animales , Tejido Adiposo Pardo/metabolismo , PPAR alfa/metabolismo , Ratones Obesos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Mitocondrias/metabolismo , Metabolismo Energético , Tejido Adiposo Blanco/metabolismo , Termogénesis , Ratones Endogámicos C57BL
2.
Acta Pharmacol Sin ; 43(8): 2026-2041, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35027662

RESUMEN

Liver fibrosis is the common consequence of almost all liver diseases and has become an urgent clinical problem without efficient therapies. Recent evidence has shown that hepatocytes-derived extracellular vesicles (EVs) play important roles in liver pathophysiology, but little is known about the role of damaged hepatocytes-derived EVs in hepatic stellate cell (HSC) activation and following fibrosis. Tetramethylpyrazine (TMP) from Ligusticum wallichii Franchat exhibits a broad spectrum of biological activities including liver protection. In this study, we investigated whether TMP exerted liver-protective action through regulating EV-dependent intercellular communication between hepatocytes and HSCs. Chronic liver injury was induced in mice by CCl4 (1.6 mg/kg, i.g.) twice a week for 8 weeks. In the last 4 weeks of CCl4 administration, mice were given TMP (40, 80, 160 mg·kg-1·d-1, i.g.). Acute liver injury was induced in mice by injection of a single dose of CCl4 (0.8 mg/kg, i.p.). After injection, mice were treated with TMP (80 mg/kg) every 24 h. We showed that TMP treatment dramatically ameliorated CCl4-induced oxidative stress and hepatic inflammation as well as acute or chronic liver fibrosis. In cultured mouse primary hepatocytes (MPHs), treatment with CCl4 or acetaminophen resulted in mitochondrial dysfunction, release of mitochondrial DNA (mtDNA) from injured hepatocytes to adjacent hepatocytes and HSCs through EVs, mediating hepatocyte damage and fibrogenic responses in activated HSCs; pretreatment of MPHs with TMP (25 µM) prevented all these pathological effects. Transplanted serum EVs from TMP-treated mice prevented both initiation and progression of liver fibrosis caused by CCl4. Taken together, this study unravels the complex mechanisms underlying the protective effects of TMP against mtDNA-containing EV-mediated hepatocyte injury and HSC activation during liver injury, and provides critical evidence inspiring the development of TMP-based innovative therapeutic agents for the treatment of liver fibrosis.


Asunto(s)
Vesículas Extracelulares , Hepatopatías , Animales , Tetracloruro de Carbono/efectos adversos , Tetracloruro de Carbono/metabolismo , ADN Mitocondrial/metabolismo , ADN Mitocondrial/farmacología , ADN Mitocondrial/uso terapéutico , Fibrosis , Células Estrelladas Hepáticas , Hepatocitos , Hígado/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/prevención & control , Hepatopatías/metabolismo , Ratones , Mitocondrias/patología , Pirazinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA