Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 239(Pt 2): 117375, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37839530

RESUMEN

Ice cover restructures the distribution of substances in ice and underlying water and poses non-negligible environmental effects. This study aimed to clarify the spatiotemporal variability and environmental effects of methane (CH4), nitrous oxide (N2O), total nitrogen (TN), total phosphorus (TP), dissolved organic carbon (DOC), and dissolved inorganic carbon (DIC) in ice and water columns during different ice-covered periods. We surveyed the ice-growth, ice-stability, and ice-melt periods in an ice-covered reservoir located in Northeast China. The results showed that underlying water (CH4: 1218.9 ± 2678.9 nmol L-1 and N2O: 19.3 ± 7.3 nmol L-1) and ice (CH4: 535.2 ± 2373.1 nmol L-1 and N2O: 9.9 ± 1.5 nmol L-1) were sources of atmospheric greenhouse gases. N2O concentrations were the highest in the bottom water of the reservoir while CH4 accumulated the most below the ice in the riverine zone. These can be attributed to differences in the solubilities and relative molecular masses of the two gases. Higher concentrations of N2O, TN, TP, DOC, and DIC were recorded in the underlying water than those in the ice due to the preferential redistribution of these substances in the aqueous phase during ice formation. Additionally, we distinguished between bubble and no-bubble areas in the riverine zone and found that the higher CH4 concentrations in the underlying water than those in the ice were due to CH4 bubbles. In addition, we reviewed various substances in ice-water systems and found that the substances in ice-water systems can be divided into solute exclusion and particle entrapment, which are attributed to differences between dissolved and particulate states. These findings are important for a comprehensive understanding of substances dynamics during ice-covered periods.


Asunto(s)
Gases de Efecto Invernadero , Gases de Efecto Invernadero/análisis , Dióxido de Carbono/análisis , Cubierta de Hielo , Agua , Nitrógeno/análisis , Óxido Nitroso , Nutrientes , Metano/análisis
2.
Sci Total Environ ; 918: 170362, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38280595

RESUMEN

Climate-sensitive ice-covered reservoirs are critical components of methane (CH4) release. However, the mechanisms that influence CH4 dynamics during ice-covered periods remain poorly studied. To investigate the effects of bubbles on CH4 dynamics, we conducted intensive field and incubation experiments in an ice-covered reservoir (ice growth, stability, and melt period) in Northeast China. We found that the mean dissolved CH4 concentrations in the ice (625.9 ± 2419.7 nmol L-1) and underlying water (1218.9 ± 2678.9 nmol L-1) were high, making them atmosphere CH4 sources. The visible bubble bands (bubble area) in the riverine zone and the vertical profile of the CH4 concentration in the ice reflect the distribution of trapped bubbles. The mean CH4 concentration in the ice of the bubble area (1674.8 ± 3926.8 nmol L-1) was 2 orders of magnitude higher than that of no-bubble area (53.7 ± 9.2 nmol L-1). Moreover, a large amount of CH4 accumulated under the ice in the bubble area. These findings suggest that bubbles determine the CH4 storage in ice and CH4 accumulation in the underlying water. Ice growth increases CH4 storage in ice and the underlying water because of the entrapment and re-dissolution of CH4 bubbles. However, ice melting releases the CH4 accumulated in the ice and underlying water. A comparison of the field and incubation experiments indicated that the deep-water environment of the reservoir had a CH4 burial effect. Stepwise regression analysis revealed that higher sediment organic matter content, median particle size, and porosity increased the production and release of CH4 bubbles, trapping more CH4 bubbles in ice. Overall, this study improves the mechanistic understanding of CH4 dynamics and predictability of CH4 emissions during ice-covered periods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA